Решения задач теоретического тура

Одиннадцатый класс

<u>Решение Задачи 11-1 (авторы: Сапарбаев Э. С., Емельянов В. А.)</u>

1. Зная плотность газа **D**, можно рассчитать его молярную массу:

 $Mr(\mathbf{D}) = 1,518 \ \Gamma/\pi \cdot 22,4 \ \pi/\text{моль} = 34 \ \Gamma/\text{моль}.$

Из газообразных веществ такую массу имеют сероводород (H_2S) и фосфин (PH_3), причём известно, что оба они пахнут плохо. Тем не менее, гнилой рыбой пахнет именно фосфин. Это позволяет сделать вывод о том, что кислоты B_H и C_H , а, следовательно, и соли A – C содержат фосфор. Если не получилось выбрать газ по запаху, то у нас ещё будет возможность отказаться от серы по другому критерию.

Теперь попробуем вычислить формулы солей, исходя из информации о массовой доле натрия и из того, что в их состав входит фосфор (или сера).

Допустим, в состав соли **A** входит только один атом натрия, тогда $Mr(\mathbf{A}) = 23/0,3239 = 71$ г/моль. Вычитаем атомную массу натрия (23 г/моль), получается, что молярная масса кислотного остатка 48 г/моль. Это либо сера и кислород, либо фосфор, водород и кислород. Тогда формула соли будет (NaSO)_n или (NaHPO)_n.

Предположим, что в состав соли **A** входит два атома натрия, тогда $Mr(\mathbf{A}) = 23 \cdot 2 / 0,3239$ = 142 г/моль. Молярная масса кислотного остатка будет равна $142 - 2 \cdot 23 = 96$ г/моль, что соответствует остаткам SO_4 и HPO_4 . Тогда формула соли Na_2SO_4 или Na_2HPO_4 .

Аналогичный расчёт для соли ${\bf B}$ даёт формулы ${\rm Na}_2{\rm SO}_3$ и ${\rm Na}_2{\rm HPO}_3$, для соли ${\bf C}$ – ${\rm NaHSO}_2$ и ${\rm NaH}_2{\rm PO}_2$.

Самый очевидный критерий, по которому сера точно не подходит под условие задачи — отличие качественного состава соли C (наличие водорода) от состава солей A и B. Помимо этого, серная кислота H_2SO_4 при $20\,^{\circ}C$ жидкость, сернистой кислоты H_2SO_3 безводной не бывает (так называют раствор сернистого газа в воде), а сульфоксиловая кислота H_2SO_2 в свободном состоянии и вовсе не выделена, существуют только её соли.

Наличие фосфора в солях **A**–**C** и газе **D**, напротив, полностью удовлетворяет условию задачи. Таким образом, $\mathbf{A} - \mathrm{Na}_2\mathrm{HPO}_4$ – гидрофосфат натрия, $\mathbf{B} - \mathrm{Na}_2\mathrm{HPO}_3$ – фосфит натрия, $\mathbf{C} - \mathrm{NaH}_2\mathrm{PO}_2$ – гипофосфит натрия, $\mathbf{D} - \mathrm{PH}_3$ – фосфин.

2. Солям Na_2HPO_3 (**B**) и NaH_2PO_2 (**C**) соответствуют фосфористая кислота H_3PO_3 (**B**_H) и H_3PO_2 (**C**_H). Структурные формулы:

3. Уравнения реакций:

Решения задач теоретического тура

- 1. $2Na_2HPO_4 + 3AgNO_3 = Ag_3PO_4 \downarrow + NaH_2PO_4 + 3NaNO_3$;
- 2. $Na_2HPO_3 + 2AgNO_3 = Ag_2HPO_3 \downarrow + 2NaNO_3$;
- 3. $Ag_2HPO_3 + H_2O \xrightarrow{t^0} 2Ag\downarrow + H_3PO_4$;
- 4. $NaH_2PO_2 + 4AgNO_3 + 2H_2O = 4Ag\downarrow + H_3PO_4 + NaNO_3 + 3HNO_3$;
- 5. $4H_3PO_3 \xrightarrow{t^0} 3H_3PO_4 + PH_3\uparrow$;
- 6. $2H_3PO_2 \xrightarrow{t^0} H_3PO_4 + PH_3 \uparrow unu \ 3H_3PO_2 \xrightarrow{t^0} 2H_3PO_3 + PH_3 \uparrow$;
- 7. $2\text{Na}_2\text{HPO}_4 \xrightarrow{t^0} \text{Na}_4\text{P}_2\text{O}_7 + \text{H}_2\text{O}$;
- 8. $Na_2HPO_3 + 2HgCl_2 + 3NaOH = Na_3PO_4 + Hg_2Cl_2 \downarrow + 2NaCl + 2H_2O$;
- 9. $H_3PO_2 + I_2 + H_2O = H_3PO_3 + 2HI$ или $H_3PO_2 + 2I_2 + 2H_2O = H_3PO_4 + 4HI$;
- 10. $PH_3 + HI = PH_4I$;
- 11. $PH_3 + 4Cl_2 \xrightarrow{t^0} PCl_5 + 3HCl.$

Система оценивания:

1. Формулы **A–D** по l баллу, названия по 0.5 балла

- 6 баллов
- **2.** Структурные формулы кислот B_H и C_H по 1 баллу, названия по 0,5 балла
- 3 балла

3. Уравнения реакций (по 1 баллу)

11 баллов

ИТОГО: 20 баллов

Решение Задачи 11-2 (автор: Беззубов С. И.)

1. Водным аммиаком можно осадить гидроксиды металлов, проявляющие слабые по сравнению с аммиаком основные свойства, при условии, что соответствующий металл не образует аммиачные комплексы. Если \mathbf{A} – гидроксид элемента \mathbf{X} бурого цвета, тогда соль \mathbf{B} – сульфат, так как она получается при действии серной кислоты на этот гидроксид. Сульфат \mathbf{B} проявляет окислительные свойства по отношению к сильным восстановителям (SO_2 , иодид, сульфид ионы). Значит, \mathbf{X} – переходный элемент. (Это следует из того, что соль \mathbf{C} – тоже сульфат, так как растворимые в воде сульфиты дают только непереходные металлы.) То есть \mathbf{X} образует сульфаты \mathbf{B} двух разных степенях окисления, причём водные растворы \mathbf{B} окрашены в характерный для этой степени окисления \mathbf{X} жёлтый цвет. Смешанный сульфат \mathbf{D} – по всей вероятности, квасцы, которые дают только трёхзарядные катионы, значит \mathbf{B} содержит \mathbf{X}^{+3} . Учитывая все эти соображения, элементом \mathbf{X} может быть только железо. Кроме того, щелочное окисление хлором гидроксида железа (III) приводит именно к краснофиолетовым растворам, содержащим анионы феррата (IV). Хром и марганец \mathbf{B} таких условиях давали бы, соответственно, жёлтые растворы хромата (IV) $\mathbf{CrO_4}^{2^-}$ и зелёные

Решения задач теоретического тура

манганата (IV) MnO_4^{2-} . Впрочем, и в низких степенях окисления в водных растворах Cr(III) и Mn(III) имеют отличную от жёлтой окраску.

Бурый гидроксид железа (III), образующийся непосредственно после осаждения, например, аммиаком, называется также ферригидритом. Вокруг его структуры до сих пор идут споры в связи с чрезвычайно малым размером образуемых частиц (< 10 нм). Попытки вырастить более крупные частицы, к сожалению, приводят к образованию более стабильных модификаций гидроксида железа (III). Ферригидрит входит в состав белкового комплекса ферритина, имеющего колоссальное физиологическое значение для организма животных и человека.

2. Таким образом, описанные превращения касаются элемента железа.

X - Fe

 $A - Fe_2O_3 \cdot 3H_2O$ (или $Fe_2O_3 \cdot xH_2O$, или $Fe(OH)_3$)

 $\mathbf{B} - \text{Fe}_2(\text{SO}_4)_3$

 $C - FeSO_4$

 $\mathbf{D} - 2KFe(SO_4)_2 \cdot 12H_2O$

 $E - K_2 FeO_4$ (принимается любой феррат (VI), в том числе и в ионной форме FeO_4^{2-})

 $\mathbf{F} - \text{BaFeO}_4$

Расчёт молярной массы феррата (VI) бария:

Молярная масса удушливого жёлто-зелёного газа $Mr(\text{газa}) = 22,4\cdot3,17 = 71 \ (\text{г/моль}) - это хлор. <math>v(\text{Cl}_2) = 0,179/22,4 = 0,0080 \ (\text{моль}).$

Используя уравнение реакции 9) (см. пункт 3), $v(феррата бария) = 0.008 \cdot 2/3$ (моль).

Mг(феррата бария) = 1,37·3/0.008/2 = 257 (г/моль). Молярная масса соответствует формуле BaFeO₄.

Определение формулы кристаллогидрата С:

Формула кристаллогидрата сульфата железа (II) – FeSO₄·yH₂O. Найдём у. Mr(FeSO₄·yH₂O) = $56 + 96 + y \cdot 18 = 152 + 18y$ (г/моль).

$$\omega(H_2O) = 18y/(152 + 18y) = 0.453$$
. Отсюда $y = 7$. Формула FeSO₄·7H₂O

Определение формулы кристаллогидрата **F**:

Смешанный сульфат содержит ионы железа (III), калия, сульфат и молекулы воды. Из условия электронейтральности молекулы соли формула — KFe(SO₄)₂·zH₂O. Найдём z. Mr(KFe(SO₄)₂·<math>zH₂O) = $39 + 56 + 2 \cdot 96 + z \cdot 18 = 287 + 18z$ (г/моль).

$$\omega(H_2O) = 18z/(287 + 18z) = 0.429$$
. Отсюда $z = 12$. Формула KFe(SO₄)₂·12H₂O

Проверка массовых долей железа:

Решения задач теоретического тура

кристаллогидрат C: $\omega(Fe) = 56/278 = 0,201$

F:
$$\omega(\text{Fe}) = 56/503 = 0,111$$
.

Всё сходится с условием задачи.

- 3. Уравнения реакций (засчитывается также Fe_2O_3 : xH_2O или $Fe(OH)_3$):
 - 1) $Fe_2(SO_4)_3 + 6NH_3 \cdot H_2O = Fe_2O_3 \cdot 3H_2O \downarrow + 3(NH_4)_2SO_4$
 - 2) $Fe_2O_3 \cdot 3H_2O + 3H_2SO_4 = Fe_2(SO_4)_3 + 6H_2O$
 - 3) $Fe_2(SO_4)_3 + SO_2 + 2H_2O = 2FeSO_4 + 2H_2SO_4$
 - 4) $Fe_2(SO_4)_3 + 2KI \xrightarrow{\text{кислая среда}} 2FeSO_4 + K_2SO_4 + I_2 \downarrow$
 - 5) $Fe_2(SO_4)_3 + H_2S = 2FeSO_4 + H_2SO_4 + S \downarrow$
 - 6) $Fe_2(SO_4)_3 + K_2SO_4 + 24H_2O = 2KFe(SO_4)_2 \cdot 12H_2O \downarrow$
 - 7) $Fe_2O_3 \cdot 3H_2O + 3Cl_2 + 10KOH = 2K_2FeO_4 + 6KCl + 8H_2O$
 - 8) $K_2FeO_4 + Ba(OH)_2 = BaFeO_4 \downarrow + 2KOH$
 - 9) $2BaFeO_4 + 16HCl = 2FeCl_3 + 3Cl_2 \uparrow + 2 BaCl_2 + 8H_2O$
- 4. При растворении квасцов в воде происходит гидролиз по катиону. В действительности, $Fe(OH)_3$ начинает осаждаться уже при pH 1, поэтому в водных растворах всех солей железа (III) в высокой концентрации представлены различные продукты гидролиза, которые и обуславливают жёлтую окраску. В данном пункте засчитывается уравнение реакции гидролиза Fe^{3+} по любой ступени, например:

$$\begin{split} Fe^{3+} + H_2O & \stackrel{\text{гидролиз}}{\longleftrightarrow} FeOH^{2+} + H^+, \\ FeOH^{2+} + H_2O & \stackrel{\text{гидролиз}}{\longleftrightarrow} Fe(OH)_2^+ + H^+, \\ Fe(OH)_2^+ + H_2O & \stackrel{\text{гидролиз}}{\longleftrightarrow} Fe(OH)_3 \downarrow + H^+, \end{split}$$

или реакция в молекулярной форме:

$$2KFe(SO_4)_2 \cdot 12H_2O \xrightarrow{\text{гидролиз}} Fe_2O_3 \cdot 3H_2O \downarrow + K_2SO_4 + 3H_2SO_4 + 18H_2O$$

5. Речь идёт о превращении ферригидрита при 70 °C в щелочном растворе в более стабильную модификацию: гётит (**G**, Göthite), что сопровождается потерей части воды:

$$Fe_2O_3 \cdot 3H_2O \xrightarrow{70^{\circ}C, \text{щелочная среда}} 2FeOOH + 2H_2O.$$

При более высокой температуре идёт полная дегидратация:

$$Fe_2O_3 \cdot 3H_2O \xrightarrow{\textbf{100}^{\circ}\textbf{C}, \text{щелочная среда}} Fe_2O_3 + 3H_2O,$$

с образованием оксида железа (III), наиболее известный минерал которого гематит (H,

Решения задач теоретического тура

Hematite).

Проверка массовых долей железа:

G:
$$\omega(\text{Fe}) = 56/89 = 0,629$$

H:
$$\omega(\text{Fe}) = 112/160 = 0,700$$
.

Всё сходится с условием задачи.

Система оценивания:

1.	За обоснованное определение железа 2 балла, установление металла без	2 балла
	пояснений – 1 балл;	

2.	3 а правильные формулы веществ $A extbf{-}F$ по 0.5 балла, за расчёт состава	5 баллов
	кристаллогидратов $oldsymbol{C}$ и $oldsymbol{D}$ по 1 баллу;	

3.	За правильные уравнения реакций 1–9 по 1 баллу;	9 баллов
4.	За указание причин жёлтой окраски с уравнением гидролиза 2 балла,	2 балла
	без уравнения – 1 балл;	

5.	За правильные формулы $m{G}$ и $m{H}$ по $0,5$ балла, за уравнения реакций	2 балла
	образования гётита и Fe_2O_3 по $0,5$ балла;	

ИТОГО: 20 баллов

Решения задач теоретического тура

Решение Задачи 11-4(автор: Седов И. А.):

1. Исходя из массовых долей элементов, определим простейшие формулы веществ:

A:
$$(85.6/12)$$
: $(14.4/1) = 1$: 2, $(CH_2)_n$;

B:
$$(44.6/12)$$
: $(6.2/1)$: $(49.3/16)$ = 6: 10: 5, $(C_6H_{10}O_5)_n$;

C:
$$(40/12)$$
: $(6.7/1)$: $(53.3/16)$ = 1 : 2 : 1, $(CH_2O)_n$.

Формула **A** соответствует циклоалканам и алкенам. Из последних при реакции с водой получаются спирты. Формулы **B** и **C** соответствуют углеводам, причём формула **B** – либо продуктам дегидратации гексоз, либо полисахаридам $(C_6H_{10}O_5)_n$. С учётом распространённости в природе и относительной сложности гидролиза можно сделать вывод, что это целлюлоза (а изомер из пункта 5 – крахмал). Тогда **C** – глюкоза, $C_6H_{12}O_6$, которая, как известно, под действием ферментов превращается в этиловый спирт C_2H_5OH (**X**). Значит, **A** – этилен C_2H_4 .

$$C_2H_4 + H_2O = C_2H_5OH$$

 $(C_6H_{10}O_5)_n + n H_2O = n C_6H_{12}O_6$
 $C_6H_{12}O_6 = 2 C_2H_5OH + 2 CO_2$

2. Найдём стандартные мольные энтальпии образования веществ А-С:

А
$$\Delta H^{\circ}$$
 (C₂H₄) = 1.87 · 28 = 52 кДж/моль;

В
$$\Delta H^{\circ}$$
 (C₆H₁₀O₅) = -5.93 · 162 = -961 кДж/моль;

$$\mathbb{C} \Delta H^{\circ} (C_6 H_{12} O_6) = -7.07 \cdot 180 = -1273 \text{ кДж/моль.}$$

Для удобства обозначим ΔH° (C₂H₅OH) = x, ΔH° (H₂O) = y, ΔH° (CO₂) = z. Тогда:

$$x-52-y=-43.7;$$

 $-1273+961-y=-26.2;$
 $2x+2z+1273=-67.7.$

Решая эту систему, находим ΔH° (C₂H₅OH) = x = -278 кДж/моль.

Кроме того, для дальнейших расчётов нам понадобятся полученные значения y = -286 кДж/моль, z = -393 кДж/моль.

- 3. Гомолог пропен C_3H_6 , из которого получается пропанол-2 (CH_3) $_2CHOH$. (Пропанол-1 не оценивается).
- 4. Исходя из приведённых цифр, себестоимость производства 1 тонны этанола из этилена в России составляет $15000 \cdot M(C_2H_4)/M(C_2H_5OH) = 9130$ рублей, в Европе $1000 \cdot M(C_2H_4)/M(C_2H_5OH) = 609$ евро; из целлюлозы в России $40000 \cdot M(C_6H_{10}O_5)/M(C_6H_{12}O_6) = 36000$ рублей, в Европе $600 \cdot M(C_6H_{10}O_5)/M(C_6H_{12}O_6) = 540$ евро. В Европе выгоднее производство спирта из целлюлозы, а в России из этилена.

(Однако ещё более выгодно, с учётом приведённых выше цен, ничего не производить, а

Решения задач теоретического тура

продавать этилен в Европу.)

- 5. Крахмал также является полимером глюкозы, но с α-гликозидными связями. Гидролиз крахмала протекает в гораздо более мягких условиях.
 - 6. Рассчитаем теплоту сгорания 1 литра этанола по реакции

$$C_2H_5OH + 3O_2 = 2CO_2 + 3H_2O$$

Стандартная энтальпия сгорания равна -2.393 - 3.286 + 278 = -1366 кДж/моль, или 29.7 МДж/кг. Такое количество энергии выделяет 29.7/33 = 0.9 л бензина. Чтобы конкурировать с ним, цена этанола должна быть не более 0.9.8 = 7.2 рубля за кг или 7200 рублей за тонну.

Система оценивания:

- **1.** Верные формулы A—C по 1.5 балла; **8 баллов** за названия по 0.5 балла;
- **2.** Расчёт стандартной энтальпии образования вещества X-4 балла (за верную систему уравнений при неверном ответе -2 балла);
- 3. Верная формула примеси; 1 балл
- **4.** Выбор более выгодного метода для России и Европы по 1 баллу **2 балла** (вывод без расчётов 0 баллов);
- **5.** Название изомера вещества B-1 балл; **2 балла** указание на более мягкие условия -1 балл;
- **6.** Расчёт энтальпии сгорания 2 балла; **3 балла** определение максимальной цены 1 балл.

ИТОГО: 20 баллов

Решение Задачи 11-4(авторы: Сальников О. Г., Ильин М. А.)

1. Получение Li[AlH₄] осуществляют в безводных условиях, поскольку он реагирует с водой с выделением водорода:

Li[AlH₄] + 4 H₂O
$$\rightarrow$$
 LiOH + Al(OH)₃ \downarrow + 4 H₂ \uparrow (или Li[AlH₄] + 4 H₂O \rightarrow Li[Al(OH)₄] + 4 H₂ \uparrow).

2. а) Концентрированная соляная кислота — это водный (~36–38 %) раствор хлороводорода. При взаимодействии металлического алюминия с соляной кислотой образуется раствор хлорида алюминия, из которого безводный AlCl₃ закристаллизовать не удастся:

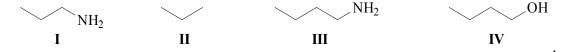
Решения задач теоретического тура

$$2 \text{ Al} + 6 \text{ HCl} \rightarrow 2 \text{ AlCl}_{3 \text{ BOJH.}} + 3 \text{ H}_2 \uparrow$$
.

б) При взаимодействии металлического алюминия с хлором образуется безводный хлорид алюминия:

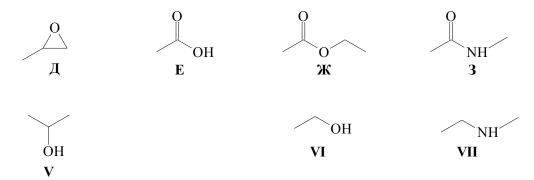
$$2 \text{ Al} + 3 \text{ Cl}_2 \rightarrow 2 \text{ AlCl}_3.$$

в) Попытка получить безводный $AlCl_3$ при прокаливании кристаллогидрата $AlCl_3 \cdot 6H_2O$ окажется неудачной, поскольку будет протекать гидролиз:


$$AlCl_3 \cdot 6H_2O \xrightarrow{100-150 \circ C} Al(OH)_2Cl + 2 HCl\uparrow + 4 H_2O\uparrow$$

(или при более высокой температуре: $AlCl_3 \cdot 6H_2O \xrightarrow{350-400 \circ C} Al_2O_3 + 6 HCl\uparrow + 9 H_2O\uparrow$).

3. Рассмотрим верхнюю часть приведённой схемы превращений. Присоединение бромоводорода к алкенам в присутствии пероксида бензоила происходит по радикальному механизму против правила Марковникова, т. е. из пропена получается 1-бромопропан (\mathbf{A}). При взаимодействии 1-бромопропана с нитритом серебра и цианидом калия происходит нуклеофильное замещение, в результате чего получаются 1-нитропропан (\mathbf{F}) и бутиронитрил (\mathbf{B}). Гидролиз соединения \mathbf{B} в кислой среде при нагревании даёт масляную кислоту ($\mathbf{\Gamma}$).


$$NO_2$$
 Br CN $COOH$

Алюмогидрид лития восстанавливает нитросоединения и нитрилы до первичных аминов, карбоновые кислоты — до первичных спиртов, а первичные алкилгалогениды — до алканов. Структурные формулы соединений **I–IV**:

При действии трифторнадуксусной кислоты пропен окисляется до пропиленоксида (Д), который при восстановлении алюмогидридом лития даёт изопропанол (V). Окисление пропена перманганатом калия в кислой среде приводит к образованию уксусной кислоты (E), которая при нагревании с этанолом в присутствии концентрированной серной кислоты превращается в этилацетат (Ж). Взаимодействие последнего с метиламином приводит к образованию *N*-метилацетамида (3). При восстановлении алюмогидридом лития этилацетат превращается в этанол (VI), а соединение 3 – в *N*-метил-*N*-этиламин (VII).

Решения задач теоретического тура

4. Уравнение реакции окисления пропена перманганатом калия в сернокислой среде:

 $H_3C-CH=CH_2+2 \text{ KMnO}_4+3 H_2SO_4 \rightarrow CH_3COOH+CO_2+2 \text{ MnSO}_4+K_2SO_4+4 H_2O.$

Система оценивания:

1. Уравнение реакции гидролиза $Li[AlH_4]$

1 балл

2. Возможность получения безводного AlCl₃:

3 балла

- **a)** Al + HCl_{KOHIL} (уравнение реакции + пояснения) l балл
- **б)** Al + Cl₂ (уравнение реакции + пояснения) 1 балл
- **в)** AlCl₃·6H₂O $\xrightarrow{t^{\circ}}$ (любое из уравнений реакции, в том числе без указания температуры + пояснения) -1 балл
- **3.** Структурные формулы **A–3** и **I–VII** по 1 баллу

15 баллов

Примечание: если участником Олимпиады на первой стадии (присоединение HBr в присутствии R_2O_2) в структуре A допущена ошибка (т. е. получен 2-бромпропан вместо 1-бромпропана), то структурная формула A оценивается в 0 баллов, а последующие стадии получения соединений \mathbf{E} — $\mathbf{\Gamma}$ и \mathbf{I} — \mathbf{IV} (в случае полностью правильных дальнейших превращений функциональных групп в синтезе) оцениваются по 0.75 балла.

4. Уравнение реакции окисления пропена

1 балл

Примечание: если в уравнении реакции нет стехиометрических коэффициентов, но указаны все реагенты и продукты — 0.5 балла; в иных вариантах (нет коэффициентов и указаны не все вещества-участники реакции) — ответ оценивается в 0 баллов.

ИТОГО: 20 баллов

Решения задач теоретического тура

Решение Задачи 11-5 (автор: Каргов С. И.)

1. Пусть p_A , p_B и p_C — парциальные давления веществ, x_A , x_B , x_C — их равновесные мольные доли, p — общее давление в равновесной газовой смеси. Тогда

$$K_1 = \frac{p_{\rm B}}{p_{\rm A}} = \frac{x_{\rm B} \cdot p}{x_{\rm A} \cdot p} = \frac{x_{\rm B}}{x_{\rm A}}.$$

Аналогично

$$K_2 = \frac{x_{\rm C}}{x_{\rm A}},$$

$$K_3 = \frac{x_{\rm C}}{x_{\rm B}}.$$

- **2.** Для расчёта состава равновесной смеси в указанной системе необходимы две константы равновесия. Третья константа не является независимой, а представляет собой комбинацию двух других. Например, $K_3 = \frac{K_2}{K_1}$.
 - 3. Сумма равновесных мольных долей всех изомеров равна единице:

$$x_{\rm A} + x_{\rm B} + x_{\rm C} = 1$$
.

Подставляем $x_B = x_A \cdot K_1$ и $x_C = x_A \cdot K_2$ и получаем

$$x_A + x_A \cdot K_1 + x_C = x_A \cdot K_2 = 1$$
.

Отсюда

$$x_{\rm A} = \frac{1}{1 + K_1 + K_2} \,,$$

$$x_{\rm B} = x_{\rm A} \cdot K_1 = \frac{K_1}{1 + K_1 + K_2}$$
,

$$x_{\rm C} = x_{\rm A} \cdot K_2 = \frac{K_2}{1 + K_1 + K_2} \,.$$

4. Пусть изначально в системе было a моль изомера A. Тогда к моменту достижения равновесия образовалось 0.28a моль изомера B, 0.56a моль изомера C и осталось a-0.28a-0.56a=0.16a моль изомера A. Общее число молей в системе равно a моль.

Равновесные мольные доли изомеров равны:

Решения задач теоретического тура

$$x_{A} = \frac{0.16a}{a} = 0.16,$$
 $x_{B} = \frac{0.28a}{a} = 0.28,$
 $x_{C} = \frac{0.56a}{a} = 0.56.$

Константы равновесия равны:

$$K_1 = \frac{x_{\rm B}}{x_{\rm A}} = \frac{0.28}{0.16} = 1.75 \,,$$

$$K_2 = \frac{x_{\rm C}}{x_{\rm A}} = \frac{0.56}{0.16} = 3.5 \,,$$

$$K_3 = \frac{x_{\rm C}}{x_{\rm B}} = \frac{0.56}{0.28} = 2 \,\,\text{(или} \,\, K_3 = \frac{K_2}{K_1} = \frac{3.5}{1.75} = 2 \,).$$

5. Запишем реакции образования изомерных пентанов:

$$5 \text{ C} + 6 \text{ H}_2 = \text{H-C}_5 \text{H}_{12}$$
 $\Delta_f G^\circ (\text{H-C}_5 \text{H}_{12}) = 141 \text{ кДж/моль}.$ $5 \text{ C} + 6 \text{ H}_2 = \text{uso-C}_5 \text{H}_{12}$ $\Delta_f G^\circ (\text{uso-C}_5 \text{H}_{12}) = 138 \text{ кДж/моль}.$ $5 \text{ C} + 6 \text{ H}_2 = \text{нeo-C}_5 \text{H}_{12}$ $\Delta_f G^\circ (\text{neo-C}_5 \text{H}_{12}) = 145 \text{ кДж/моль}.$

Реакция μ - $C_5H_{12} \rightleftharpoons uso$ - C_5H_{12} (то есть $A \rightleftarrows B$) получается вычитанием первой реакции из второй.

Следовательно,
$$\Delta G_1^\circ = 138 - 141 = -3$$
 кДж/моль и $K_1 = \exp\left(\frac{3000}{8.314\cdot600}\right) = 1.82$.

Аналогично, реакция $H-C_5H_{12} \rightleftharpoons heo-C_5H_{12}$ (то есть $A \rightleftarrows C$) получается вычитанием первой реакции из третьей.

Следовательно,
$$\Delta G_2^\circ = 145 - 141 = 4$$
 кДж/моль и $K_2 = \exp\left(-\frac{4000}{8.314 \cdot 600}\right) = 0.448$.

Тогда
$$K_3 = \frac{K_2}{K_1} = 0.246$$
.

$$x_{\rm A} = \frac{1}{1+K_1+K_2} = 0.306\,,$$

$$x_{\rm B} = \frac{K_1}{1+K_1+K_2} = 0.557\,,$$

$$x_{\rm C} = \frac{K_2}{1+K_1+K_2} = 0.137 \ \ (\text{или } x_{\rm C} = 1-x_{\rm A}-x_{\rm B} = 0.137).$$

ВсОШ по химии, III региональный этап 2015–2016 учебный год Решения задач теоретического тура

Система оценивания:

1.	За каждое правильное выражение константы по 1 баллу	3 балла
2.	За правильный ответ с объяснением 2 балла, без объяснения 0 баллов	2 балла
3.	За каждую правильно выведенную формулу 1.5 балла	4.5 балла
4.	За каждое правильное значение константы по 1 баллу	3 балла
5.	За каждое правильное значение константы по 2 балла	6 баллов
	За правильный расчёт каждой мольной доли (даже с неправильно	1.5 балла
	найденными значениями констант) по 0.5 балла	
	ИТОГО:	20 баллов