ВсОШ по химии, Региональный этап 2017–2018 учебный год

Решения задач экспериментального тура

Десятый класс (Саморукова О.Л., Апяри В.В.)

1. Уравнение реакции, протекающей при титровании:

$$(NH_4)_2C_2O_4 + KMnO_4 + H_2SO_4 \rightarrow CO_2 +$$

$$2 \mid MnO_4^- + 8H^+ + 5e = Mn^{2+} + 4H_2O$$

+

$$5 \mid C_2O_4^{2-} - 2e = 2CO_2$$

 $5C_2O_4^{2-} + 2MnO_4^{-} + 16H^{+} = 10CO_2 + 2Mn^{2+} + 8H_2O_4^{-}$

$$10NH_{4}^{+} + 5C_{2}O_{4}^{2-} + 2K^{+} + 2MnO_{4}^{-} + 16H^{+} + 8SO_{4}^{2-} = 10CO_{2} + 2Mn^{2+} + 2SO_{4}^{2-} + 2NO_{4}^{2-} + 2NO_$$

$$10N{H_4}^{\scriptscriptstyle +} + 5S{O_4}^{2 \scriptscriptstyle -} + 2K^{\scriptscriptstyle +} + S{O_4}^{2 \scriptscriptstyle -} + 8H_2O$$

 $5(NH_4)_2C_2O_4 + 2KMnO_4 + 8H_2SO_4 = 10CO_2 + 2MnSO_4 + 5(NH_4)_2SO_4 + K_2SO_4 + 8H_2O$

ИЛИ

$$2 \mid Mn^{+7} + 5e = Mn^{2+}$$

$$5 \mid 2C^{+3} - 2e = 2C^{+4}$$

 $2KMnO_4 + 5(NH_4)_2C_2O_4 + ... \rightarrow 2MnSO_4 + 10CO_2 + 5(NH_4)_2SO_4 + K_2SO_4 + \\$

• • •

$$5(NH_4)_2C_2O_4 + 2KMnO_4 + 8H_2SO_4 = 10CO_2 + 2MnSO_4 + 5(NH_4)_2SO_4 + K_2SO_4 + 8H_2O$$

2. Поскольку из уравнения реакции видно, что $(NH_4)_2C_2O_4$ реагирует с $KMnO_4$ в мольном соотношении 5:2, то:

$$\frac{v((NH_4)_2C_2O_4)}{v(KMnO_4)} = \frac{c((NH_4)_2C_2O_4)\cdot V_{\text{аликвоты}}}{c(KMnO_4)\cdot V_{\text{\tiny T}}} = \frac{5}{2} \ .$$

где:

 $V_{\text{аликвоты}}-$ объем раствора (NH₄) $_2C_2O_4$

 $V_{\scriptscriptstyle T}$ – средний объем раствора титранта (KMnO₄).

Отсюда:

$$c(KMnO_4), M = \frac{c(\frac{v(FeSO_4)}{v(KMnO_4)} = \frac{c(FeSO_4) \cdot V_{\text{аликвоты}}}{c(KMnO_4) \cdot V_{\text{\tiny T}}}}{5 \cdot V_{\text{\tiny T}}} = \frac{0,0250M \cdot 10 \text{м.л.} \cdot 2}{5 \cdot V_{\text{\tiny T}}, \text{м.л.}} = \frac{0,1}{V_{\text{\tiny T}}, \text{м.л.}}.$$

ВсОШ по химии, Региональный этап 2017–2018 учебный год

Решения задач экспериментального тура

Таким образом, зная объем титранта, можно рассчитать точную концентрацию KMnO₄.

3. Кислота необходима для обеспечения количественного перехода Mn(V) в Mn(II). В менее кислых средах будет наблюдаться образование осадка MnO_2 , что привнесет значительные ошибки в определение концентрации титранта:

$$MnO_4^- + 2H_2O + 3e = MnO_2 \downarrow + 4OH^-$$

4. При хранении водного раствора КМпО₄ происходит его медленное взаимодействие с водой по уравнению:

$$4KMnO_4 + 2H_2O = 4KOH + 4MnO_2 \downarrow + 3O_2 \uparrow$$

5. Проведем титрование по указанной методике, **рассчитаем средний объем титранта,** $V_{\rm T}$, пошедший на титрование аликвоты (NH₄)₂C₂O₄, и далее – концентрацию KMnO₄ по указанной выше формуле.

Система оценивания

- Уравнение реакции, протекающей при титровании
 Вывод формулы (принимается как формула в общем виде, так и с конкретными числовыми коэффициентами)
 Объяснение необходимости добавления кислоты
 а) Указание на взаимодействие КМпО₄ с водой 1 балл
 Уравнение реакции 1 балл
- 5. Точность определения концентрации КМпО₄ участником в 30 баллов баллах оценивается, исходя из абсолютной погрешности ($\Delta V_{\rm T}$, мл), то есть разницы между величиной среднего объема титранта, полученной участником, и истинным значением (с точностью до сотых долей мл). Если абсолютная погрешность составляет меньше 0,15 мл, то выставляется 30 баллов, если больше 1 мл, выставляется 5 баллов. В остальных случаях оценка определяется по формуле:

Балл =
$$30*(1.15 - \Delta V_{\rm T})$$
,

с округлением до ближайшего целого или полуцелого значения по правилам математики.