для жюри

Решение (авторы: Филатова Е.А., Фурлетов А.А.)

1. Уравнения протекающих реакций:

$$2CuSO_4 + 4KI = 2CuI + I_2 + 2K_2SO_4$$

$$I_2 + 2Na_2S_2O_3 = 2NaI + Na_2S_4O_6$$

- 2. Избыток иодид-ионов в реакционной смеси создают для:
- а) уменьшения летучести молекулярного иода (соответственно, и его потерь) за счет связывания I_2 в растворимое комплексное соединение состава $K[I_3]$;
- б) снижения равновесного потенциала пары $I_3^-/3I^-$, что способствует более эффективному протеканию реакции окисления иодид-ионов.
- **3.** Водный раствор $Na_2S_2O_3$ является неустойчивым в силу ряда причин:
- а) жизнедеятельность тиобактерий, поглощающих тиосульфат натрия;
- б) окисление тиосульфата натрия кислородом:

$$2Na_2S_2O_3 + O_2 = 2Na_2SO_4 + 2S$$

в) поглощение углекислого газа:

$$Na_2S_2O_3 + CO_2 + H_2O = NaHSO_3 + NaHCO_3 + S$$

4. Титрование иода раствором $Na_2S_2O_3$ проводят в слабокислой среде, потому что только в этих условиях иод быстро и стехиометрично окисляет тиосульфат-ион.

В сильнокислой среде происходит гидролиз крахмала, а также разложение тиосульфата натрия:

$$S_2O_3^{2-} + H^+ \leftrightarrows HS_2O_3^- \leftrightarrows HSO_3^- + S$$

В щелочной среде происходит диспропорционирование иода:

$$I_2 + 2OH^- \leftrightarrows IO^- + I^- + H_2O$$
 или $3I_2 + 6OH^- \leftrightarrows IO_3^- + 5I^- + 3H_2O$

5. В присутствии избытка иода крахмал образует с ним прочный адсорбционный комплекс, медленно разрушающийся в процессе титрования. Поэтому добавление крахмала в начале титрования может привести к тому, что результаты определения меди(II) окажутся заниженными.

Система оценивания

1. Уравнения реакций (задание 1) — 2 уравнения по 1 б	2 балла
(если неверно уравнены — по 0.5 б)	
2. Роль избытка КІ (достаточно привести хотя бы одну из ролей)	1 балл
3. Причины неустойчивости $Na_2S_2O_3$ — 2 причины по 0.5 б	1 балл
4. Уравнения реакций (задание 3) — 2 уравнения по 1 б	2 балла
(если неверно уравнены — по 0.5 б)	
5. Обоснование, почему I_2 титруют в слабокислой среде	0.5 балла
6. Побочные процессы (задание 4) — 2 процесса по $0.5\ 6$	1 балл
7. Уравнения реакций (задание 4) — 2 уравнения по 0.5 б	1 балл
(если неверно уравнены — по 0.25 б)	

9. *Точность титрования* оценивается, исходя из разницы (ΔV , мл) между величиной среднего объема $Na_2S_2O_3$, который участник затратил на титрование, и ожидаемым значением, в соответствии с таблицей:

0.5 балла

8. Обоснование, почему крахмал добавляют в конце титрования

Определение меди(II)	
ΔV , мл	Баллы
≤ 0.1	14
0.1 - 0.2	12
0.2 - 0.3	10
0.3 - 0.4	8
0.4 - 0.5	6
0.5 - 1.0	4
> 1.0	2

10. Правильность расчета массы меди в мерной колбе (оценивается, исходя из среднего объема титранта, полученного участником, безотносительно точности титрования)

ИТОГО 25 баллов

В случае, если участнику понадобится дополнительное количество реактива, долив реактива производится 1 раз без штрафа, в последующих случаях — со штрафом 2 балла.