для жюри

Решение (авторы: Филатова Е.А., Фурлетов А.А.)

1. Заполним таблицу:

	H ₂ SO ₄	NH ₃ ·H ₂ O	Na ₂ CO ₃	MgSO ₄	ZnCl ₂	Ba(NO ₃) ₂
H ₂ SO ₄		_	1	_	_	↓
NH ₃ ·H ₂ O				↓	↓ *	_
Na ₂ CO ₃	↑			↓ (+↑)	↓ (+↑)	↓
MgSO ₄		↓	↓ (+↑)			↓
ZnCl ₂		*	↓ (+↑)			_
Ba(NO ₃) ₂	↓	_	↓	↓	_	_

Примечание: \downarrow — выпадение осадка, \downarrow * — выпадение осадка, растворимого в избытке одного из реагентов, \uparrow — выделение газообразных веществ, «—» — отсутствие аналитических признаков (химическая реакция при этом может идти).

- 2. Уравнения реакций (принимается любой из вариантов, разделенных «или»):
- 1) $2Na_2CO_3 + H_2SO_4 = 2NaHCO_3 + Na_2SO_4$

или

$$Na_2CO_3 + H_2SO_4$$
 (изб.) = $Na_2SO_4 + CO_2\uparrow + H_2O$

2)
$$Ba(NO_3)_2 + H_2SO_4 = BaSO_4 \downarrow + 2HNO_3$$

3)
$$MgSO_4 + 2NH_3 \cdot H_2O = Mg(OH)_2 \downarrow + (NH_4)_2SO_4$$

4)
$$ZnCl_2 + 2NH_3 \cdot H_2O = Zn(OH)_2 \downarrow + 2NH_4Cl$$
 или

$$ZnCl_2 + 4NH_3 \cdot H_2O$$
 (изб.) = $[Zn(NH_3)_4]Cl_2 + 4H_2O$

5)
$$MgSO_4 + Na_2CO_3 = MgCO_3 \downarrow + Na_2SO_4$$

или

$$2MgSO_4 + 2Na_2CO_3 + H_2O = Mg_2(OH)_2CO_3 \downarrow + CO_2 \uparrow + 2Na_2SO_4$$

6)
$$ZnCl_2 + Na_2CO_3 = ZnCO_3 \downarrow + 2NaCl$$

или

$$2ZnCl_2 + 2Na_2CO_3 + H_2O = Zn_2(OH)_2CO_3 \downarrow + CO_2 \uparrow + 4NaCl$$

7)
$$Ba(NO_3)_2 + Na_2CO_3 = BaCO_3 \downarrow + 2NaNO_3$$

8)
$$Ba(NO_3)_2 + MgSO_4 = BaSO_4 \downarrow + Mg(NO_3)_2$$

- **3.** Существует несколько вариантов решения этой задачи. Ниже приведен один из возможных.
- 1) Смочим полоски универсальной индикаторной бумаги каждым из выданных растворов. При контакте с раствором H_2SO_4 универсальная индикаторная бумага окрасится в красный цвет, что позволяет однозначно идентифицировать это соединение. При контакте с растворами $NH_3 \cdot H_2O$ и Na_2CO_3 универсальная индикаторная бумага окрасится в синий цвет.
- 2) В две чистые пробирки перенесем небольшое количество растворов, в которых универсальная индикаторная бумага окрашивалась в синий цвет (растворы NH₃·H₂O и Na_2CO_3). Добавим к ним раствор серной кислоты H_2SO_4 . В пробирке, в которой нет видимых изменений, находится $NH_3 \cdot H_2O$. Это же соединение идентифицировать по характерному запаху. В пробирке, в которой при добавлении серной кислоты наблюдается выделение газа без цвета и запаха, находится Na₂CO₃. 3) Осталось идентифицировать растворы MgSO₄, ZnCl₂ и Ba(NO₃)₂. В три чистые пробирки перенесем небольшое количество соответствующих растворов, после чего по каплям добавим к ним NH₃·H₂O. В пробирке, в которой нет видимых изменений, находится $Ba(NO_3)_2$. В пробирке, в которой образуется белый осадок, не растворяющийся в избытке NH₃·H₂O, находится MgSO₄. В пробирке, в которой

Система оценивания

образуется белый осадок, растворяющийся в избытке NH₃·H₂O, находится ZnCl₂.

1. Заполнение таблицы — 30 ячеек по 0.2 б баллов (ячейки по главной диагонали таблицы не оцениваются)

2. Уравнения реакций — 8 уравнений по 0.5 б

(если неверно уравнены — по 0.25 б) 4 балла

3. Идентификация веществ — 6 веществ по 2.5 б

15 баллов

ИТОГО 25 баллов

В случае, если участнику понадобится дополнительное количество реактива, долив реактива производится 1 раз (в 1 соответствующую склянку) без штрафа, в последующих случаях — со штрафом 1 балл. Таким образом, если необходим долив n склянок, штраф составляет (n-1) баллов, но не более 4 баллов.