Материалы для проведения регионального этапа

50-й ВСЕРОССИЙСКОЙ МАТЕМАТИЧЕСКОЙ ОЛИМПИАДЫ ШКОЛЬНИКОВ

2023-2024 учебный год

Второй день

31 января — 1 февраля 2024 г.

Сборник содержит материалы для проведения III этапа 50-й Всероссийской олимпиады школьников по математике. Задания подготовлены Центральной предметно-методической комиссией по математике Всероссийской олимпиады школьников.

Сборник составили: Н. Х. Агаханов, С. Л. Берлов, И. И. Богданов, П. А. Кожевников, А. С. Кузнецов, Е. Г. Молчанов, О. К. Подлипский, К. А. Сухов, А. И. Храбров, Д. Г. Храмцов.

А также: М. А. Дидин, В. Б. Мокин, П. Ю. Козлов, А. Д. Терёшин, Д. А. Терёшин, Г. Р. Челноков, Л. М. Шатунов.

В скобках после каждой задачи указана фамилия её автора.

Рецензент: д.ф.-м.н. Р. Н. Карасёв.

Компьютерный макет: И.И. Богданов, А.И. Голованов.

[©] Авторы и составители, 2024

[©] И.И. Богданов, А.И. Голованов, 2024, макет

Введение

Порядок проведения, методика и система оценивания (проверки) регионального этапа Всероссийской олимпиады школьников по математике 2023–2024 учебного года.

Региональный этап Всероссийской олимпиады школьников по математике 2023—2024 учебного года проводится по заданиям, подготовленным Центральной предметно-методической комиссией, в единые для всех субъектов РФ сроки: 31 января 2024 г. (І тур) и 1 февраля 2024 г. (ІІ тур). Региональный этап проводится по отдельным заданиям для учащихся $9,\ 10$ и 11 классов.

Задания для каждого класса включают 10 задач — по 5 задач в каждом из двух дней (туров) Олимпиады (задачи 1-5 — I тур, задачи 6-10 — II тур). Продолжительность каждого тура для каждого класса составляет 3 часа 55 минут.

В силу того, что во всех субъектах Российской Федерации региональный этап проводится по одним и тем же заданиям, подготовленным Центральной предметно-методической комиссией, в целях предотвращения преждевременного доступа к текстам заданий со стороны участников Олимпиады, а также их учителей и наставников, время начала и окончания туров в установленные даты в каждом субъекте РФ должно определяться в соответствии с «Временными регламентами проведения туров регионального этапа Всероссийской олимпиады школьников в субъектах Российской Федерации в 2023–2024 учебном году» для часовых поясов.

Разбор задач в субъектах Российской Федерации, где тур оканчивается в 16.00 и 17.00 по местному времени, проводится не раньше, чем на следующий день после проведения второго тура Олимпиады.

Решение каждой задачи оценивается целым числом баллов от 0 до 7. Максимальное количество баллов, которое может получить участник, равно 70 (35 — I тур, 35 — II тур).

Задания математических олимпиад являются творческими, допускают несколько различных вариантов решений. Кроме того, необходимо оценивать частичные продвижения в задачах (например, разбор важного случая, доказательство вспомогательного утверждения, нахождение примера и т. п.). Наконец, возможны логические и арифметические ошибки в решениях. Окончательные баллы по задаче должны учитывать всё вышеперечисленное.

Проверка работ осуществляется в соответствии со следующими правилами:

а) любое правильное решение оценивается в 7 баллов. Недопустимо снятие баллов за то, что решение слишком длинное, или за то, что решение школьника отличается от приведённого в методических разработках;

- б) недопустимо снятие баллов в работе за неаккуратность записи решений;
- в) баллы не выставляются «за старание Участника», в том числе за запись в работе большого по объёму текста, не содержащего продвижений в решении задачи;
 - г) черновики не проверяются.

В связи с необходимостью качественной оценки работ участников, на их проверку выделяется до 7 дней.

Для единообразия оценки работ участников олимпиады из разных регионов и с целью исключения при этом ошибок, Центральная предметно-методическая комиссия имеет право перепроверки работ участников регионального этапа.

В случае отсутствия специальных критериев по задаче, её решение оценивается по приведённой ниже таблице (отметим, что для исключения различий в оценке близких продвижений по задаче в работах разных участников, таблица упрощена по сравнению с приведённой в Требованиях по проведению регионального этапа).

Баллы	Правильность (ошибочность) решения
7	Полное верное решение.
5-7	Верное решение. Имеются недочёты, в целом не влияю-
	щие на решение.
1-4	Задача не решена, но в работе имеются существенные
	продвижения.
0	Аналитическое решение (координатным, векторным, тригонометрическим методом) геометрической задачи, не доведённое до конца.
0	Рассмотрение частного случая, не дающее продвижений в решении в общем случае.
0	Верное решение отсутствует, существенных продвижений нет.

Ниже приведены ответы и решения к задачам олимпиады. В комментариях к задачам указаны критерии оценивания (в баллах) некоторых предполагаемых ошибок и частичных продвижений. Заметим, что работа участника, помимо приведённых, может включать другие содержательные продвижения и ошибки, которые должны быть оценены дополнительно.

11 класс

11.6. У учителя есть 100 гирь массами 1 г, 2 г, ..., 100 г. Он хочет раздать Пете и Васе по 30 гирь так, чтобы выполнялось следующее условие: никакие 11 Петиных гирь не уравновешиваются никакими 12 Васиными гирями, а также никакие 11 Васиных гирь не уравновешиваются никакими 12 Петиными гирями. Сможет ли учитель это сделать? (О. Подлипский)

Ответ. Сможет.

Первое решение. Выберем 30 гирь с массами вида 3k+1 г и дадим Пете, а Васе дадим 30 гирь с массами вида 3k+2 г. Тогда масса любых 12 гирь, взятых у одного человека, будет делиться на 3, а масса любых 11 гирь, взятых у одного человека, не будет делиться на 3.

Второе решение. Выберем 30 гирь с массами $1, 2, 3, \dots 30$ г и дадим Пете, а Васе дадим 30 гирь с массами $71, 72, 73, \dots 100$ г. Тогда у Пети масса любых 11 или 12 гирь будет меньше $30 \cdot 12 = 360$ г. А масса любых 11 или 12 гирь у Васи будет больше $70 \cdot 11 = 770$ г.

Комментарий. Верный ответ без объяснения — 0 баллов.

Приведен пример верного разбиения на две группы по 30 гирь, но не объяснено, почему пример подходит (или объяснено только для одного из двух случаев) — 4 балла.

Приведен пример, который не работает хотя бы для одного выбора наборов гирь — 0 баллов.

11.7. График G_1 квадратного трехчлена $y = px^2 + qx + r$ с вещественными коэффициентами пересекает график G_2 квадратного трехчлена $y = x^2$ в точках A и B. Касательные в точках A и B к графику G_2 пересекаются в точке C. Оказалось, что точка C лежит на графике G_1 . Найдите все возможные значения p.

(А. Терёшин)

Ответ. 2.

Первое решение. Касательная в точке $A(x_a; x_a^2)$ к графику G_2 имеет уравнение

$$y=f'(x_a)(x-x_a)+x_a^2=2x_a(x-x_a)+x_a^2=2x_ax-x_a^2.$$
 Аналогично уравнение касательной в точке $B(x_b;x_b^2)$ есть $y=2x_bx-x_b^2,$ откуда точка пересечения C имеет координаты

 $\left(\frac{x_a+x_b}{2}; x_a x_b\right)$. Три точки $A,\ B$ и C принадлежат графику квадратного трёхчлена px^2+qx+r , поэтому

$$\begin{cases} px_a^2 + qx_a + r = x_a^2, \\ px_b^2 + qx_b + r = x_b^2, \\ p \cdot \left(\frac{x_a + x_b}{2}\right)^2 + q \frac{x_a + x_b}{2} + r = x_a x_b. \end{cases}$$

Сложим первые два равенства и вычтем удвоенное третье, получим

$$p \cdot \left(x_a^2 + x_b^2 - \frac{x_a^2}{2} - x_a x_b - \frac{x_a^2}{2}\right) + q \cdot (x_a + x_b - x_a - x_b) + 2r - 2r =$$

$$= x_a^2 + x_b^2 - 2x_a x_b,$$

$$p \cdot \left(\frac{x_a^2}{2} - x_a x_b + \frac{x_a^2}{2}\right) = x_a^2 + x_b^2 - 2x_a x_b,$$

$$\frac{p(x_a - x_b)^2}{2} = (x_a - x_b)^2.$$

Так как $x_a \neq x_b$, получаем, что p=2.

Второе решение. Вычтем из обоих трёхчленов линейную функцию, график которой проходит через точки A и B. Обозначим полученные трёхчлены соответственно P(x) и Q(x) (где у P(x) старший коэффициент равен p, а у Q(x) он равен 1). Пусть абсциссы точек A и B равны соответственно x_a и x_b . Тогда $P(x_a) = P(x_b) = Q(x_a) = Q(x_b) = 0$, и касательные в точках $(x_a,0)$ и $(x_b,0)$ к графику трёхчлена Q(x) пересекаются на графике P(x). В самом деле, вычитание линейной функции сохраняет условия касания прямой и параболы в точке с заданной абсциссой, а также пересечения двух прямых и параболы в одной точке.

Обозначим $(x_a+x_b)/2$ через x_m . Поскольку $Q(x_a)=Q(x_b)=0$, график трёхчлена Q(x) симметричен относительно прямой $x=x_m$, поэтому касательные к этому графику в точках $(x_a,0)$ и $(x_b,0)$ пересекаются на оси симметрии. Пусть также точка пересечения касательных имеет координаты (x_m,y_c) , а вершина параболы-графика Q(x) имеет координаты (x_m,y_d) .

Поскольку старший коэффициент трёхчлена Q(x) равен 1, имеет место равенство $0-y_d=(x_b-x_m)^2$, или $y_d=-(x_a-x_b)^2/4$,

поскольку график Q(x) есть парабола $y=x^2$, перенесённая параллельно так, чтобы вершина попала в (x_m,y_d) . По этой же причине угловые коэффициенты касательных в точках $(x_a,0)$ и $(x_b,0)$ есть $\pm (x_a-x_b)$; значит, $y_c=-(x_a-x_b)^2/2$. Таким образом, если перенести параболы-графики P(x) и Q(x) так, чтобы их вершины попали в (0,0), то ординаты точек с абсциссой $x=x_m$ на этих параболах будут соответственно $-y_c$ и $-y_d=-y_c/2$, из чего следует, что старший коэффициент у P(x) в 2 раза больше, чем у Q(x).

Замечание. Используя интерполяционный многочлен Лагранжа, можно получить, что

$$p = \frac{x_a^2}{(x_a - x_b)\left(x_a - \frac{x_a + x_b}{2}\right)} + \frac{x_b^2}{(x_b - x_a)\left(x_b - \frac{x_a + x_b}{2}\right)} + \frac{x_a x_b}{\left(\frac{x_a + x_b}{2} - x_a\right)\left(\frac{x_a + x_b}{2} - x_b\right)} = 2 \cdot \frac{x_a^2 + x_b^2 - 2x_a x_b}{(x_a - x_b)^2} = 2.$$

Комментарий. Верный ответ без обоснования — 0 баллов. Приведение примера трехчлена с p=2 не требуется. Найдены координаты точки C-1 балл.

11.8. В пространстве расположены отрезки AA_1 , BB_1 и CC_1 с общей серединой M. Оказалось, что сфера ω , описанная около тетраэдра $MA_1B_1C_1$, касается плоскости ABC в точке D. Точка O — центр окружности, описанной около треугольника ABC. Докажите, что MO=MD. (А. Кузнецов)

Решение. Обозначим через O_1 центр окружности, описанной около треугольника $A_1B_1C_1$, через P — центр сферы ω (см. рис. 5). При центральной симметрии относительно точки M треугольник ABC переходит в треугольник $A_1B_1C_1$. Следовательно, точки O и O_1 симметричны относительно точки M, то есть M — середина отрезка OO_1 . Также мы получаем, что плоскости ABC и $A_1B_1C_1$ параллельны. Тогда на прямой, проходящей через точку P перпендикулярно этим плоскостям, лежат точки D и O_1 , поэтому $\angle O_1DO = 90^\circ$. Таким образом, DM — медиана в

прямоугольном треугольнике O_1DO , значит, MO=MD, что и требовалось.

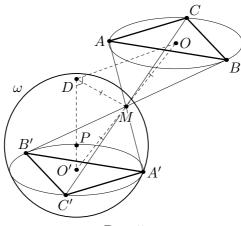


Рис. 5

Комментарий. 1) Отмечен центр O окружности, описанной около треугольника ABC и центр P сферы $\omega - 0$ баллов.

- 2.1) Доказано, что точка M середина отрезка OO_1 2 балла.
- 2.2) Задача сведена к доказательству того, что $\angle O_1DO==90^\circ-4$ балла.
- 3.1) Доказано, что точки P,O_1,D лежат на одной прямой, перпендикулярной плоскостям ABC и $A_1B_1C_1-2$ балла.
 - 3.2) Доказано, что $\angle O_1 DO = 90^{\circ} 3$ балла.

Суммируются баллы за критерии из разных групп. Внутри одной группы баллы не суммируются.

11.9. Правильный треугольник T со стороной 111 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1. Все вершины этих треугольников, кроме центра треугольника T, отмечены. Назовём множество из нескольких отмеченных точек $\mathit{линейным}$, если все эти точки лежат на одной прямой, параллельной стороне T. Сколько существует способов разбить все отмеченные точки на 111 линейных множеств? (Способы, отличающиеся порядком множеств, считаются одинаковыми.)

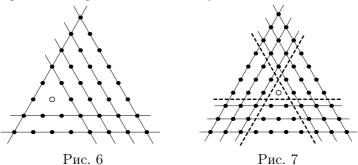
Ответ. $2^{3\cdot 37^2} = 2^{4107}$.

Решение. Рассмотрим равносторонний треугольник со стороной k, разобьём его на правильные треугольнички со стороной 1 и отметим все вершины этих треугольничков; полученную конструкцию назовём k-треугольником. В дальнейшем под nps-мыми мы всегда будем понимать прямые, параллельные сторонам этого треугольника и проходящие через хотя бы одну отмеченную точку.

Лемма. Пусть A — отмеченная точка в k-треугольнике. Тогда существует единственный способ провести k прямых так, что все отмеченные точки, кроме, возможно, A, покрыты этими прямыми. A именно, для каждой стороны k-треугольника надо провести все прямые, параллельные ей и лежащие между этой стороной и точкой A (включая саму сторону, но исключая прямую, содержащую A, см. рис. 6).

Доказательство. Индукция по k. База при k=1 проверяется легко: надо провести прямую, содержащую две оставшихся точки, кроме A.

Для перехода рассмотрим сторону k-треугольника, на которой не лежит A. Если прямая, содержащая эту сторону, не проведена, то все k+1 отмеченных точек на этой прямой должны быть покрыты различными прямыми; это невозможно, так как прямых k. Значит, эта прямая проведена. Выкинув её и точки k-треугольника, лежащие на ней, получаем (k-1)-треугольник, в котором проведено k-1 прямых с теми же условиями. Осталось применить предположение индукции.



Перейдём к задаче. Рассмотрим одно из разбиений на линей-

ные множества. Для каждого множества проведём прямую, его содержащую. Тогда эти прямые покрыли все отмеченные точки 111-треугольника, кроме, возможно, его центра A. Значит, эти прямые устроены так, как описано в лемме, и для любого разбиения этот набор прямых один и тот же.

Заметим, что наш 111-треугольник разбился на 6 областей: три «ромба» в углах, состоящих из точек, покрытых нашими прямыми дважды, и три «трапеции» у сторон, в которых каждая точка покрыты одной прямой (см. рис. 7). Тогда каждая точка в «трапеции» относится к множеству, лежащему на этой прямой; каждую же точку в «ромбе» можно отнести к любому из двух множеств, лежащих на проходящих через неё прямых. Все такие выборы можно сделать независимо друг от друга. Поскольку в каждом из трёх «ромбов» всего 37^2 точек, получаем, что требуемых разбиений ровно $2^{3\cdot37^2}$.

Замечание. Вариант доказательства леммы можно получить, показав сначала, что такое покрытие невозможно осуществить при помощи менее, чем k прямых.

Комментарий. Доказано только, что все точки, кроме одной, нельзя покрыть менее чем 111 прямыми — 1 балл.

Доказана только лемма, а подсчёт проведён неверно — 4 балла.

Лемма используется без доказательства — не более 3 баллов. Во в целом верном подсчёте допущена ошибка на ± 1 (например, утверждается, что в ромбах по 36^2 или по 38^2 точек) — снимается 1 балл.

11.10. Дано натуральное число n>100. Изначально на доске написано число 1. Каждую минуту Петя представляет число, записанное на доске, в виде суммы двух неравных положительных несократимых дробей, а Вася оставляет на доске только одну из этих двух дробей. Докажите, что Петя может добиться того, чтобы знаменатель оставшейся дроби через n минут не превышал 2^n+50 вне зависимости от действий Васи. (M. $\mathcal{L}u\partial un$)

Решение. Приведем стратегию для Пети. Для этого представим 1 в виде суммы 2^n дробей с числителями 1, разобьем их на пары не равных, сложим числа в каждой паре. Затем 2^{n-1}

полученных результатов вновь разобьем на пары не равных, и сложим числа в каждой паре. Будем продолжать так делать, пока не получится одно число. Поскольку сумма всех дробей равна 1, то после n шагов остается число 1.

Предположим, что описанный выше процесс возможен. В таком случае Петя разложит 1 в сумму двух чисел, которые складывались на n-м шаге. Вася выберет одно из слагаемых, которые представимо как сумму двух чисел, сложением которых данное число было получено на n-1-м шаге и т.д. В конечном итоге останется одна из исходных 2^n дробей.

Для реализации указанного процесса нам потребуется следующее вспомогательное утверждение.

Лемма. Есть 2 четвёрки чисел $a_1 > a_2 > a_3 > a_4$ и $b_1 > b_2 > b_3 > b_4$. Тогда их можно сгруппировать по парам (a_i, b_j) , чтобы числа в каждой паре были различны и суммы чисел в каждой паре были различны.

Доказательство. Разберем несколько случаев:

- 1° . $a_1=b_1,\ a_2=b_2$. Если $a_4\neq b_4$, не умаляя общности $a_3\geqslant b_3$ и можно сгруппировать $a_1+b_2>b_1+a_3>a_2+b_3>a_4+b_4$. В случае $a_4=b_4$ и н.у.о. $a_3\geqslant b_3$ группируем $a_1+b_2>b_1+a_3>b_2+b_4>b_3+a_4$.
- 2° . $a_3=b_3,\ a_4=b_4$ сводится к предыдущему, если мы перейдем к четверкам чисел $-a_i,-b_i$.
- 3° . Пары (a_1,b_1) и (a_2,b_2) разные, а также пары (a_3,b_3) и (a_4,b_4) разные. В таком случае покажем как сгруппировать числа первых двух пар между собой, с числами в третьей и четвертой паре поступим аналогично, явно получив две меньшие суммы чем в первой паре. Если $a_1=b_1$ или $a_2=b_2$ подходит a_1+b_2,a_2+b_1 , в противном случае можно сгруппировать a_1+b_1 и a_2+b_2 .

Покажем, что описанный в начале решения процесс возможен (получится на каждом шаге складывать различные числа), если исходные 2^n дробей удастся разбить на четверки так, чтобы в каждой четверке были попарно различные дроби. Действительно, в таком случае на очередном шаге мы разобьем четверки на пары и согласно лемме будем складывать числа из разных четверок. После каждого такого шага получившиеся суммы

вновь будут разбиваться на четверки попарно различных чисел. Продолжая так первые n-2 шага, мы в итоге получим четверку различных чисел $x_1 < x_2 < x_3 < x_4$, на n-1 шаге сложим $x_1 + x_2$ и $x_3 + x_4$, и на n-м шаге сложим уже эти два числа.

Таким образом, достаточно представить 1/4 в виде суммы 2^{n-2} дробей вида 1/m четырьмя разными способами, каждый раз используя разные знаменатели, не превосходящие $2^n + 50$.

Проделаем так для трех различных значений k, остается убедиться, что полученные представления не содержат одинаковых дробей. Ясно, что с первым выбранным набором три новых не пересекаются, а также дроби вида $\frac{1}{2^n+2^k}$ могут быть лишь в

одном наборе. Остается проверить, что дроби вида $\frac{1}{2^{k+p}q}$ различны. Предположим противное, $2^{k+p}q=2^{k_1+p_1}q_1$. Поскольку q и q_1 нечетны, получаем, что $q=q_1$, и это число — общий делитель 2^n+2^k и $2^n+2^{k_1}$. Тогда $2^k-2^{k_1}$ кратно q, поэтому q<32. Однако, $p=\frac{n-k}{t}< n/3$, откуда $2^p+1< 2^{n/2}$ и $q>2^{n/2}>32$, противоречие.

Замечание. Неформально говоря, Петя с самого начала анализирует все возможные способы течения игры и для каждого варианта заранее продумывает ответ. Этому можно сопоставить двоичное дерево ранга n, в 2^n листьях которого содержатся

все возможные исходные (дроби вида $\frac{1}{m}$ с суммой 1 и знаменателями, не превосходящими 2^n+50), а в каждой из остальных вершин записано число, равное сумме чисел в вершинах-потомках. Задача эквивалентна тому, что существует такое дерево, причем у каждой вершины (кроме листьев), в вершинах-потомках записаны разные числа.

Комментарий. (A0) Идея выделять 2^n возможных исходов и описание необходимых условий (в терминах процесса или двоичного дерева) — 1 балл.

- (A1) Задача сведена к возможности построения процесса, используемого в решении 2 балла.
- (B0) Сформулирована лемма о разбиении чисел в двух четверках 1 балл.
- (В1) Доказана лемма о разбиении чисел в двух четверках 2 балла.
- (C0) Идея разбивать $\frac{1}{4}$ в виде суммы дробей четырьмя способами так, чтобы разные способы содержали разные дроби и в каждом способе было 2^{n-2} дроби 1 балл. За предъявление тривиального способа (разбиение на равные дроби) баллы дополнительно не начисляются.
- (C1) Построено разбиение единицы на дроби, которые разбиваются на четверки не равных 3 балла.

Суммируются лишь продвижения из разных групп (A), (B), (C), продвижения за критерии одной группы не суммируются.