
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ АСТРОНОМИЯ. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 100.

Задачи 1-2. На рисунке* показан вид звёздного неба на широте Москвы в разное время одной зимней ночи, который фиксировался раз в 2 часа. Рисунки перепутались.

1. Сопоставьте парами изображения неба, между моментами зарисовок которых прошло 4 часа.

Ответ: 46, 32, 61, 25

1

^{*} Источник изображений: сайт astronet.ru

Критерии оценивания: каждая верная пара +2 балла. Если дано больше четырёх ответов, то за каждый ответ сверх четырёх оценка уменьшается на 2 балла. Зеркальные ответы, например 46 и 64, считаются за один.

- 2. Какие из точек небесной сферы присутствуют хотя бы на одной из представленных картинок?
 - Северный полюс мира
 - Южный полюс мира
 - точка зимнего солнцестояния
 - надир

Критерии оценивания: верный выбор +2 балла.

Всего за задачу 10 баллов.

Решение

Используйте Малый Ковш в качестве «часовой стрелки» для определения времени, прошедшего между моментами получения разных зарисовок. Двум часам соответствует поворот этой «стрелки» на 30° , четырём часам — поворот на 60° .

На каждой из зарисовок видна Полярная звезда, рядом с которой находится северный полюс мира. Южный полюс мира на небесной сфере находится в противоположной точке и не видим из Северного полушария Земли (всегда горизонтом). находится под Надир точка небесной сферы, зениту. Поэтому противоположная она также всегда под горизонтом и не видна ни на одной из зарисовок. Точка зимнего солнцестояния в принципе не будет видна в северной стороне неба, т. к. имеет отрицательное склонение и восходит/заходит в южной части горизонта.

Задача 3. Сопоставьте длину волны и название соответствующего диапазона шкалы электромагнитных колебаний.

Длина волны	Диапазон
13 мкм	инфракрасное излучение
0.1 мм	
1200 нм	
520 нм	видимое излучение
0.4 мкм	
60 м	радио излучение
10 см	
10 нм	рентгеновское излучение
200 нм	ультрафиолетовое излучение
	гамма излучение

Критерии оценивания: каждое верное сопоставление +1 балл, каждое ошибочное сопоставление —1 балл.

Всего за задачу 9 баллов.

Задача 4. Перед вами географическая карта Гренландии*. Радиус Земли считать равным 6400 км.

Чему равны географические координаты восточной оконечности мыса Брустера? Ответ приведите в градусах, округлите до целого.

Ответ: 70 с.ш., 22 з.д.

Критерии оценивания: совпадение с ответом для широты +2 балла, попадание в интервал для долготы [21,23] +2 балла.

Чему равно расстояние от восточной оконечности мыса Брустера до северного полюса Земли? Ответ приведите в километрах.

Ответ: 2234

Критерии оценивания: попадание в интервал [2200,2260] +5 баллов.

Какой путь надо проделать, чтобы, следуя вдоль параллели, добраться от восточной оконечности мыса Брустера до восточного побережья Канады? Ответ приведите в километрах.

^{*} Источник изображения сайт http://planetolog.ru/map-country.php?country=GL

Всероссийская олимпиада школьников. Астрономия. 2025–2026 уч. г. Муниципальный этап. 10 класс. Ответы и критерии оценивания

Ответ: 1720

Критерии оценивания: попадание в интервал [1600, 1840] +5 баллов.

Всего за задачу 14 баллов.

Решение

Посмотрев на карту, легко ответить на первый вопрос. Восточная оконечность мыса Брустера имеет координаты $\phi = 70^{\circ}$ с. ш., $\lambda = 22^{\circ}$ з. д. Из-за сходимости меридианных кругов к полюсам точно по карте определить долготу не представляется возможным. Поэтому принимаются ответы в диапазоне от 21° до 23° .

Широта северного полюса Земли равна 90°. Соответственно, северный полюс и восточную оконечность мыса Брустера разделяют 20°. Полная длина любого меридиана равна половине длины окружности радиуса R: $\pi R = \pi \cdot 6400 = 20106$ км. При этом широта меняется от полюса до полюса, т.е. на 180° . Отсюда длина 1° меридиана равна: 20106 / 180 = 111.7 км.

Теперь можно найти расстояние от северного полюса Земли до восточной оконечности мыса Брустера: 20 · 111.7 = 2234 км.

Длина 1° параллели зависит от широты — чем ближе к экватору, тем ближе длина 1° параллели к длине 1° долготы, т. е. к 111.7 км. В общем случае, длина 1° параллели равна $111.7 \cdot \cos \varphi$, т.е. для широты восточной оконечности мыса Брустера $111.7 \cdot \cos 70^\circ \approx 38.2$ км. По карте найдём долготу точки побережья Канады, лежащей на параллели 70° с. ш. Она равна 67° . Искомое расстояние будет равно $(67-22) \cdot 38.2 \approx 1720$ км.

Задачи 5-6. Астероид движется со скоростью 16.5 км/с вокруг Солнца по круговой орбите, лежащей в плоскости эклиптики. Ответьте на вопросы, зная, что скорость движения Земли по орбите равна 30 км/с.

5-1. Чему равен радиус орбиты астероида? Ответ выразите в астрономических единицах, округлите до десятых.

Ответ: 3.3

Критерии оценивания: попадание в интервал [3.2, 3.4] +6 баллов; не округлённые до десятых ответы из этого интервала оцениваются в +4 балла.

5-2. Чему равен период обращения астероида вокруг Солнца? Ответ выразите в годах, округлите до десятых.

Ответ: 6

Критерии оценивания: попадание в интервал [5.9, 6.1] +6 баллов; не округлённые до десятых ответы из этого интервала оцениваются в +4 балла.

- **6.** Какой была бы скорость движения астероида, если бы его орбита была наклонена под углом 45° к плоскости эклиптики?
 - Скорость была бы больше, т. к. при приближении к плоскости эклиптики его дополнительно ускоряло бы притяжение Солнца.
 - Скорость была бы меньше, т. к. при удалении от плоскости эклиптики его дополнительно тормозило бы притяжение Солнца.
 - Скорость была бы такой же.
 - Скорость была бы переменной в зависимости от того, приближается астероид к эклиптике или удаляется от неё.
 - Не хватает данных для ответа.

Критерии оценивания: совпадение с ответом +5 баллов.

Всего за задачу 17 баллов.

Решение

Скорость движения по круговой орбите можно задаётся формулой

$$V = \sqrt{\frac{GM}{R}},$$

где M — масса тела, вокруг которого происходит движение, R — радиус орбиты. Отсюда радиус орбиты

$$R = \frac{GM}{V^2}$$
.

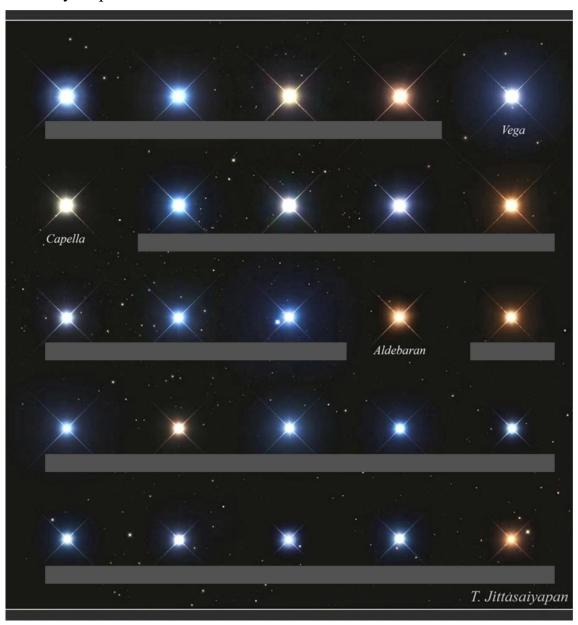
Тогда, сравнивая движение астероида с движением Земли, можно записать:

$$R = R_3 \frac{30^2}{16.5^2} = 3.3 \text{ a. e.}$$

Период обращения астероида вокруг Солнца можно вычислить с помощью третьего закона Кеплера, записанного в простой форме:

 $P^2 = R^3$. Здесь P выражено в годах, а R — в астрономических единицах.

Тогда:
$$P = \sqrt{R^3} = \sqrt{3.3^3} \approx 6.0$$
 лет.


Скорость движения по орбите не зависит от её наклонения.

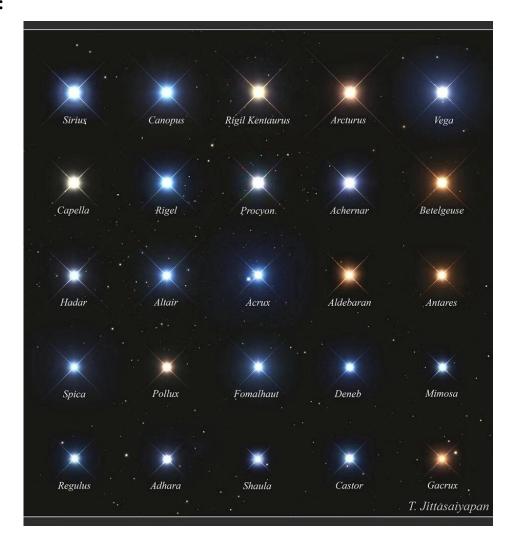
Матрица параметров и ответов к вариантам задачи 5.

Вариант	Скорость астероида	Ответ на вопрос 5-1	Зачётный диапазон	Ответ на вопрос 5-2	Зачётный диапазон
2	17,5	2,9	[2.8, 3,0]	5,0	[4.9, 5.1]
3	18,9	2,5	[2.4, 2.6]	4,0	[3.9, 4.1]

Не округлённые до десятых ответы зачётных диапазонов оцениваются в +4 балла.

Задачи 7-8. На рисунке приведены изображения наиболее ярких звёзд, видимых на всём земном небе. Цвета и яркость звёзд на картинке соответствуют реальности.

7. Укажите на изображение звезды, которая могла бы представлять Бетельгейзе.


Критерии оценивания: верное указание +3 балла.

8. Укажите на изображение звезды, которая могла бы представлять Сириус.

Критерии оценивания: верное указание +3 балла.

Всего за задачу 6 баллов.

Ответ:

Решение

Бетельгейзе — яркая красная звезда. Изображение известной яркой жёлтой звезды Капеллы и изображение красной звезды Альдебарана указывают нам на цветовую шкалу рисунка. Изображение Бетельгейзе должно быть по цвету близко к цвету Альдебарана и быть ярче него. Этому условию соответствуют 2 звезды, которые и необходимо указать при ответе (допускается указать только одно из изображений — саму Бетельгейзе).

Сириус – самая яркая звезда на небе. Его изображение по цвету должно быть при этом похоже на Вегу. В ответе надо указать на верхнюю левую звезду.

Задача 9. Обсерватория находится на широте Москвы ($\phi = 56.0^{\circ}$ с. ш., $\lambda = 39.0^{\circ}$ в. д.).

На какой высоте в этой обсерватории кульминируют объекты, находящиеся на экваторе?

Ответ: 34

Критерии оценивания: совпадение с ответом +5 баллов.

Всероссийская олимпиада школьников. Астрономия. 2025–2026 уч. г. Муниципальный этап. 10 класс. Ответы и критерии оценивания

Эклиптика наклонена к плоскости небесного экватора на 23.5°. На какой максимальной высоте в этой обсерватории кульминирует Солнце?

Ответ: 57.5

Критерии оценивания: совпадение с ответом +5 баллов.

Всего за задачу 10 баллов.

Решение

5

Для вычисления высоты небесного тела в верхней кульминации используется формула $h = 90 - \varphi + \delta$ (при кульминации в южной стороне горизонта). У объекта на небесном экваторе $\delta = 0$. Значит, высота будет равна $h = 90 - 56 = 34^{\circ}$.

Склонение объектов, находящихся на эклиптике, заключено в пределах $\pm 23.5^{\circ}$. В соответствии с формулой, максимальная высота в кульминации достигается при $\delta = +23.5^{\circ}$: $h=90-56+23.5=57.5^{\circ}$.

	1 ,	1 1		1	
Вариант	Город	Широта	Долгота	Ответ на	Ответ на
				первый вопрос	второй вопрос
2	Якутск	62.0° с. ш.	130.0° в. д.	28	51.5
3	Улан-Удэ	52° с. ш.	108.0° в. д.	38	61.5
4	Тула	54.0° с. ш.	34.0° в. д.	36	59.5

30

53.5

60° с. ш. | 38.0° в. д.

Матрица параметров и ответов к вариантам задачи 9.

Задача 10. В астрономии в горизонтальной системе координат используется астрономический азимут, который отсчитывается от точки юга, а не от точки севера, как географический азимут. Считая, что склонение Полярной звезды равно 90°, вычислите её астрономический азимут и высоту с точностью в 1° в следующих городах Земли:

Москва ($\phi = 56^{\circ}$ с. ш., $\lambda = 37^{\circ}$ в. д.)

Белозерск

Ответ: азимут 180, высота 56

Критерии оценивания: каждая верная координата +2 балла.

Пекин ($\phi = 40^{\circ}$ с. ш., $\lambda = 116^{\circ}$ в. д.)

Ответ: азимут 180, высота 40

Критерии оценивания: каждая верная координата +2 балла.

Канберра ($\phi = 35^{\circ}$ ю. ш., $\lambda = 149^{\circ}$ в. д.).

Ответ: азимут 180, высота –35

Критерии оценивания: каждая верная координата +2 балла.

Всего за задачу 12 баллов.

Решение

В условии сказано, что склонение Полярной звезды равно 90°, значит, она совпадает с северным полюсом мира. Следовательно, её азимут равен 180° для всех пунктов наблюдения на поверхности Земли, кроме полюсов. Высота северного полюса мира определяется в соответствии с теоремой о равенстве высоты северного полюса мира и широты места наблюдения. Это значит, что и высота Полярной звезды равна широте пункта наблюдения с учётом знака — для Северного полушария Земли знак будет «+», для Южного полушария знак будет «-».

Матрица параметров и ответов к вариантам задачи 10.

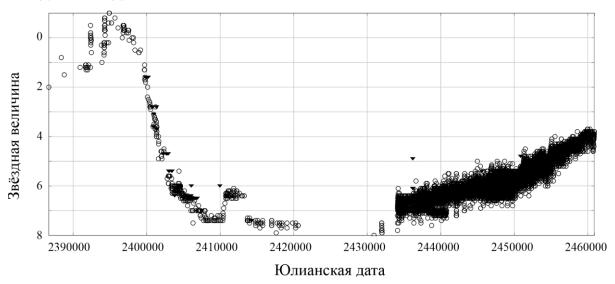
Вариант	Город	Азимут	Высота
2	Архангельск($\phi = 65^{\circ}$ с. ш., $\lambda = 41^{\circ}$ в. д.)	180	65
	Шанхай ($\phi = 31^{\circ}$ с. ш., $\lambda = 121^{\circ}$ в. д.)	180	31
	Мельбурн (φ = 37° ю. ш.,	180	-37
	$\lambda=145^\circ$ в. д.)		

Задача 11. Годичный параллакс измеряется в угловых секундах. Однако в настоящее время всё чаще используется его представление в миллисекундах дуги. Расстояние до одного из спутников нашей галактики равно 45 000 пк. Чему равен параллакс этого спутника в миллисекундах дуги?

Ответ: 0.022

Критерии оценивания: попадание в интервал [0.02, 0.0223] +8 баллов.

Всего за задачу 8 баллов.


Решение

Параллакс можно вычислить по формуле p=1 / d, где d — расстояние до объекта в парсеках. Для 45000 пк параллакс равен $1/45000 \approx 2.2 \cdot 10^{-5}$ " или 0.022 миллисекунды дуги.

Матрица параметров и ответов к вариантам задачи 11.

Вариант	Расстояние, пк	Ответ	Критерии оценивания
2	23 000	0.043	попадание в интервал [0.04, 0.0435] +8 баллов
3	82 000	0.012	попадание в интервал [0.01, 0.0122] +8 баллов
4	30 000	0.033	попадание в интервал [0.03, 0.0334] +8 баллов

Задачи 12-15. На рисунке* представлена визуальная (полученная по глазомерным оценкам яркости) кривая блеска одной из самых массивных звёзд нашей галактики. По оси X отложена юлианская дата (она используется для непрерывного счёта дней без разбиения на года), а по оси Y — блеск звезды в звёздных величинах.

12. На какую юлианскую дату пришёлся максимум блеска звезды?

Ответ: 2395000

Критерии оценивания: попадание в интервал [2393400, 2396800] +2 балла.

13. В каком примерно году звезда находилась в самом ярком состоянии? Считайте, что в день проведения олимпиады юлианская дата равна JD = 2460973.

Ответ: 1845

Критерии оценивания: попадание в интервал [1840, 1850] +5 баллов.

14. Чему был равен блеск звезды в самом ярком состоянии?

Ответ: -1

Критерии оценивания: попадание в интервал [-1.1, -0.9] +2 балла.

15. Какой блеск имела бы звезда в максимуме своего блеска, если бы расстояние до неё было в 10 раз меньше? Межзвёздным поглощением пренебречь.

Ответ: -6

Критерии оценивания: попадание в интервал [-6.1, -5.9] + 5 баллов.

Всего за задачу 14 баллов.

^{*} Источник изображения сайт: aavso.org

Всероссийская олимпиада школьников. Астрономия. 2025–2026 уч. г. Муниципальный этап. 10 класс. Ответы и критерии оценивания

Решение

Из кривой блеска видно, что максимум блеска наблюдался примерно на JD = 2395000. То есть это было $2460973 - 2395000 \approx 66000$ дней или около 180 лет назад. Искомый ответ — примерно в 1845 г. Шкала времени на рисунке достаточно грубая, поэтому принимается ответ из диапазона [1840–1850].

В максимуме блеск этой звезды достигал -1 звёздной величины. Если бы в это время звезда оказалась в 10 раз ближе к Земле, то количество энергии, падающей на единицу площади поверхности Земли увеличилось бы в $10^2 = 100$ раз. Согласно определению звёздной величины, такое увеличение освещённости соответствует уменьшению звёздной величины на $5^{\rm m}$. То есть блеск звезды был бы равен $-6^{\rm m}$.

Речь в задаче идёт о реальном объекте – двойной звезде η Киля, компоненты которой имеют массу в несколько десятков масс Солнца.

Максимальный балл за работу – 100.