
ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ АСТРОНОМИЯ. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 107.

Задачи 1-4. На рисунке* показан вид звёздного неба на широте Москвы в разное время одной зимней ночи, который фиксировался раз в 2 часа. Рисунки перепутались.

1. Сопоставьте парами изображения неба, между моментами зарисовок которых прошло 4 часа.

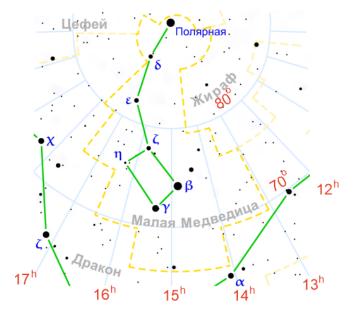
Ответ: 46, 32, 61, 25

Критерии оценивания: каждая верная пара +1 балл. Если дано больше четырёх ответов, то за каждый ответ сверх четырёх оценка уменьшается на 1 балл. Зеркальные ответы, например 46 и 64, считаются за один.

^{*} Источник изображений: сайт astronet.ru

- 2. Какие из точек небесной сферы присутствуют хотя бы на одной из представленных картинок?
 - Северный полюс мира
 - Южный полюс мира
 - точка зимнего солнцестояния
 - надир

Критерии оценивания: верный выбор +2 балла.


3. Пользуясь картой, определите с точностью до часа, чему равно звёздное время на зарисовке 3.

Ответ: 3

Критерии оценивания: попадание в интервал [3,4] +5 баллов.

4. Пользуясь картой, определите с точностью до часа, чему равно звёздное время на зарисовке 1.

Ответ: 9

Критерии оценивания: попадание в интервал [8,9] +5 баллов.

Всего за задачу 16 баллов.

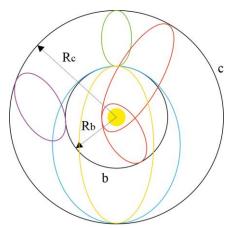
Решение

- 1. Используйте Малый Ковш в качестве «часовой стрелки» для определения времени, прошедшего между моментами получения разных зарисовок. Двум часам соответствует поворот этой «стрелки» на 30°, четырём часам поворот на 60°.
- 2. На каждой из зарисовок видна Полярная звезда, рядом с которой находится северный полюс мира. Южный полюс мира на небесной сфере находится в противоположной точке и не видим из Северного полушария Земли (всегда находится под горизонтом). Надир точка небесной сферы, противоположная зениту. Поэтому она также всегда находится под горизонтом и не видна ни на одной из зарисовок. Точка зимнего солнцестояния в принципе не будет видна в северной стороне неба, т. к. имеет отрицательное склонение и восходит/заходит в южной части горизонта.
- 3, 4. Как известно, звёздное время равно прямому восхождению звезды, находящейся в данный момент в верхней кульминации. На представленных зарисовках это звёзды, находящиеся между северным полюсом Мира и зенитом. Однако мы не знаем их экваториальных координат. По карте мы можем определить прямые восхождения звёзд ковша Малой Медведицы и использовать их. На зарисовке 3 в нижней кульминации находится звезда γ Малой Медведицы, прямое восхождение которой равно примерно 15^h 20^m. Это значит, что в этот момент в верхней кульминации находятся звёзды с прямым восхождением 3^h 20^m. Значит, в момент зарисовки звёздное время было равно 3ч 20м. На зарисовке 1 звезда β Малой Медведицы прошла четверть суточного пути от своей нижней кульминации, т. е. до её верхней кульминации осталось 6 часов. Это значит, что через 6 часов звёздное время будет равно её прямому восхождению, или примерно 14^h 50^m. То есть на зарисовке 1 звёздное время равно 8^h50^m.

Задачи 5-6. Уже несколько десятилетий телескопы работают во всей шкале электромагнитных колебаний. В конце XX — начале XXI века появились приборы для регистрации неэлектромагнитных сигналов из космоса, которые также назвали телескопами.

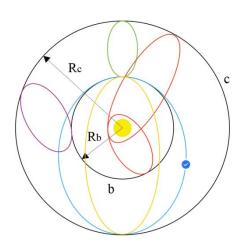
5. Сопоставьте длину волны и название соответствующего диапазона шкалы электромагнитных колебаний.

Длина волны	Диапазон	
8.8 мкм	инфракрасное излучение	
0.12 мм		
500 нм		
620 нм	видимое излучение	
0.45 мкм		
30 м	радио излучение	
5 см		
180 нм	ультрафиолетовое излучение	
2.3 нм	рентгеновское излучение	
	гамма излучение	


Критерии оценивания: каждое верное сопоставление +1 балл, каждое ошибочное сопоставление —1 балл.

- **6.** Какие из перечисленных телескопов детектируют электромагнитное излучение от небесных объектов?
 - телескоп-рефрактор
 - телескоп-рефлектор
 - радиотелескоп
 - нейтринный телескоп
 - гравитационно-волновой телескоп
 - гамма-телескоп

Критерии оценивания: каждый верный выбор +1 балл, каждый ошибочный выбор -2 балла.


Всего за задачу 13 баллов.

Задача 7-8. Межпланетный корабль, исследующий астероиды Солнечной системы, разогнавшись до необходимой скорости, выключил двигатели и совершает перелёт с орбиты астероида b на орбиту астероида c по наиболее выгодной траектории (орбита Гомана). Орбиты планет считать круговыми и лежащими в одной плоскости.

7. Укажите на рисунке орбиту корабля.

Ответ:

Критерии оценивания: совпадение с ответом +4 балла.

8. Сколько времени займёт перелёт в одну сторону, если известно, что радиус орбиты астероида c равен R_c =8 а. е., а радиус орбиты астероида b равен R_b =2.6 а. е.? Ответ приведите в годах, округлите до десятых.

Ответ: 6.1

Критерии оценивания: совпадение с ответом +6 баллов; ответ 12.2 оценивается в +2 балла.

Всего за задачу 10 баллов.

Решение

Полёт с выключенными двигателями будет происходить вокруг Солнца по эллиптической орбите, касающейся в точках перигелия и афелия орбит астероидов. Такая орбита на рисунке только одна, она нарисована голубой линией.

Время, необходимое для перелёта с орбиты на орбиту, равно половине периода обращения по эллиптической орбите. Большая полуось этой орбиты равна $a=(R_b+R_c)/2=5.3$ а.е. Из 3-го закона Кеплера период $P=\sqrt{5.3^3}\approx 12.2$. Отсюда следует, что время перелёта будет равно 6.1 года.

Задача 9. В двойной системе по круговым орбитам вокруг общего центра масс обращаются звёзды с массами 15 и 20 масс Солнца. Расстояние между звёздами равно 20 а. е.

Чему равен радиус орбиты звезды с массой 20 масс Солнца, по которой она обращается вокруг центра масс двойной системы? Ответ выразите в астрономических единицах, округлите до десятых.

Ответ: 8.6

Критерии оценивания: совпадение с ответом +6 баллов; ответ 8.5 оценивается в +4 балла, ответ без округления +3 балла.

Для массивных звёзд, находящихся на Главной последовательности, выполняется соотношение «светимость пропорциональна массе в 3 степени». Во сколько раз больше светимость массивной звезды? Ответ округлите до десятых.

Ответ: 2.4

Критерии оценивания: совпадение с ответом +6 баллов; ответ 2.3 оценивается в +4 балла, ответ без округления +3 балла.

Всего за задачу 12 баллов.

Решение

9-1. Обозначим через a_1 и a_2 расстояния от центра масс до звёзд с массами M_1 =15 и M_2 =20 соответственно. Сумма этих расстояний равна расстоянию между звёздами a. Расстояние от центра масс до компонентов системы обратно пропорционально массам компонентов. Можно составить систему уравнений:

$$a_1 + a_2 = a \\ \frac{a_1}{a_2} = \frac{M_2}{M_1}$$

Подставим числа из условия:

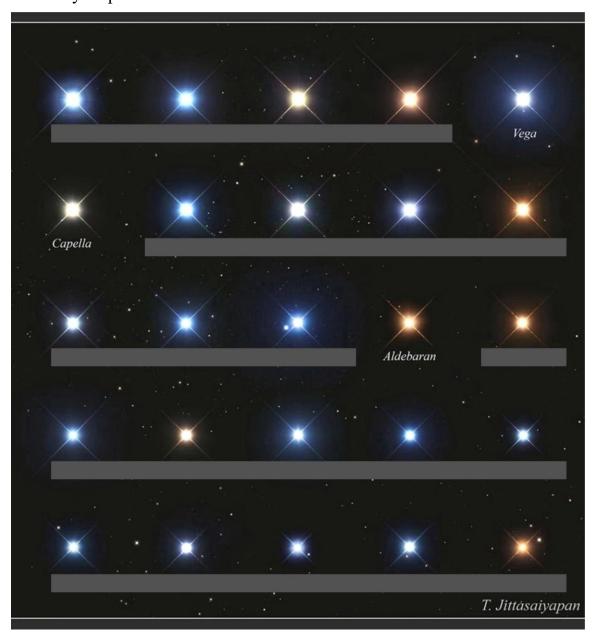
$$a_1 + a_2 = 20$$
$$\frac{a_1}{a_2} = \frac{20}{15}$$

Решив систему, получим:

$$a_1 \approx 11.4$$
 $a_2 \approx 8.6$

9-2. Запишем формулу связи массы и светимости:

$$L \propto M^3$$


Тогда для отношения светимостей можно записать:

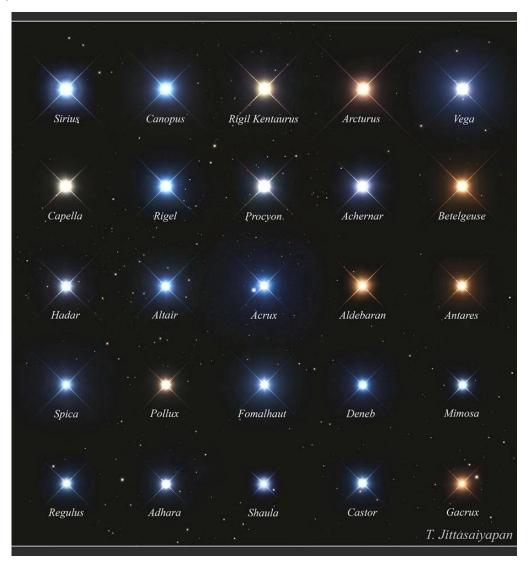
$$\frac{L_2}{L_1} = \left(\frac{M_2}{M_1}\right)^3 = \left(\frac{20}{15}\right)^3 \approx 2.4$$

Матрица параметров и ответов к вариантам задачи 9.

Вариант	M_1	M_2	Расстояние Ответ на между первый		Ответ на второй
			звёздами, а.е.	вопрос	вопрос
2	17	30	30	10.9	5.5
3	22	37	37	13.8	4.8
4	11	17	17	6.7	3.7
5	16	33	33	10.8	8.8

Задачи 10-11. На рисунке приведены изображения наиболее ярких звёзд, видимых на всём земном небе. Цвета и яркость звёзд на картинке соответствуют реальности.

10. Укажите на изображение звезды, которая могла бы представлять Бетельгейзе.


Критерии оценивания: верное указание +3 балла.

11. Укажите на изображение звезды, которая могла бы представлять Сириус.

Критерии оценивания: верное указание +3 балла.

Всего за задачу 6 баллов.

Ответ:

Решение

Бетельгейзе — яркая красная звезда. Изображение известной яркой жёлтой звезды Капеллы и изображение красной звезды Альдебарана указывают нам на цветовую шкалу рисунка. Изображение Бетельгейзе должно быть по цвету близко к цвету Альдебарана и быть ярче него. Этому условию соответствуют 2 звезды, которые и необходимо указать при ответе (допускается указать только одно из изображений — саму Бетельгейзе).

Сириус – самая яркая звезда на небе. Его изображение по цвету должно быть при этом похоже на Вегу. В ответе надо указать на верхнюю левую звезду.

Задача 12. Обсерватория находится на широте г. Ярославля ($\phi = 58.0^{\circ}$ с. ш., $\lambda = 49.0^{\circ}$ в. д.).

На какой высоте в этой обсерватории кульминируют объекты, находящиеся на небесном экваторе?

Ответ: 32

Критерии оценивания: совпадение с ответом +4 балла.

Эклиптика наклонена к плоскости небесного экватора на 23.5°. На какой максимальной высоте в этой обсерватории кульминирует Солнце?

Ответ: 55.5

Критерии оценивания: совпадение с ответом +5 баллов.

Орбита астероида наклонена к плоскости эклиптики на 40°. На какой максимальной высоте в этой обсерватории кульминирует этот астероид?

Ответ: 90

Критерии оценивания: совпадение с ответом +7 баллов.

Всего за задачу 16 баллов.

Решение

Для вычисления высоты небесного тела в верхней кульминации используется формула $h = 90 - \varphi + \delta$ (при кульминации в южной стороне горизонта). У объекта на небесном экваторе $\delta = 0$. Значит, высота будет равна $h = 90 - 58 = 32^{\circ}$.

Склонение объектов, находящихся на эклиптике, заключено в пределах $\pm 23.5^{\circ}$. В соответствии с формулой максимальная высота в кульминации достигается при $\delta = +23.5^{\circ}$: $h = 90 - 58 + 23.5 = 55.5^{\circ}$.

Если астероид может отклоняться от эклиптики на угол до 40° , то его склонение меняется в интервале $\pm 63.5^{\circ}$. В соответствии с формулой $h=90-\phi+\delta$ при увеличении склонения от 0 до 63.5 высота будет увеличиваться и при $\delta=58^{\circ}$ станет равна 90° . Дальнейшее увеличение склонения приведёт к уменьшению высоты — астроид будет кульминировать между зенитом и северным полюсом Мира. Таким образом, искомый ответ 90° .

Формальная подстановка максимального склонения астероида в формулу для высоты даст ответ $h = 95.5^{\circ}$. Так как высота светил над горизонтом должна лежать в диапазоне от -90° до $+90^{\circ}$, то этот ответ означает, что кульминация происходит не над точкой юга или в зените, а с другой стороны от зенита — между зенитом и точкой севера. Учёт этого приводит к ответу 84.5° , что меньше, чем 90° .

Матрица параметров и ответов к вариантам задачи 12.

Bap.	Город	Широта	Долгота	Ответ на вопрос 1	Ответ на вопрос 2	Ответ на вопрос 3
2	Челябинск	55° с. ш.	61° в. д.	35	58.5	90
3	Самара	53° с. ш.	50° в. д.	37	60.5	90
4	Ростов-на- Дону	47° с. ш.	40° в. д.	43	66.5	90
5	Владивосток	43° с. ш.	132° в. д.	47	70.5	90

Задача 13. Расстояние до звезды равно 56 пк.

Чему равен параллакс этой звезды? Ответ выразите в угловых секундах, округлите до тысячных.

Ответ: 0.018

Критерии оценивания: совпадение с ответом +6 баллов; ответ 0.017 оценивается в 4 балла; ответ без округления +3 балла.

Выразите расстояние до этой звезды в астрономических единицах.

Ответ: 11 600 000

Критерии оценивания: попадание в интервал [11 400 000,11 700 000] +4 балла.

Собственное движение этой звезды равно $\mu_{\alpha}=0.0000''$ /год, $\mu_{\delta}=0.0200''$ /год. Чему равна тангенциальная скорость движения звезды? Ответ приведите в км/с, округлите до целых.

Ответ: 5

Критерии оценивания: совпадение с ответом +5 баллов.

Всего за задачу 15 баллов.

Решение

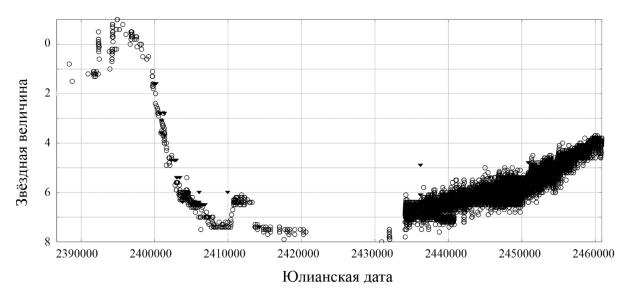
Параллакс можно вычислить по формуле p=1 / d, где d — расстояние до объекта в парсеках. Тогда параллакс равен 1 / $56 \approx 0.01786" \approx 0.018"$.

Самый простой путь решения — помнить, сколько астрономических единиц приходится на 1 парсек. Тогда искомый ответ $206265 \cdot 56 = 11550840$ а. е. Держать в ответе столько значащих цифр не имеет смысла, так как расстояние известно обычно с относительно невысокой точностью и дано в условии с двумя значащими цифрами. При этом погрешность в 1 пк соответствует погрешности примерно в 200000 а. е. Поэтому округлим до 11600000 а. е. Можно решать задачу через определение парсека —

это расстояние, с которого радиус земной орбиты виден под углом 1". Тогда 1 парсек будет равен 1 а. е. / tg 1" ≈ 206265 .

Можно найти нужную величину, вспомнив, что 1 парсек примерно равен 3.27 светового года. Ответ получится таким же.

Вычислим, какое расстояние проходит звезда за 1 год. Длину отрезка, видимого с расстояния 56 пк под углом 0.02'', можно найти разными способами. Например, вспомнив, определение парсека. Это расстояние, с которого отрезок в 1 а. е. виден под углом в 1". Заданный в условии угол в 50 раз меньше, а расстояние до звезды в 56 раз больше. Это значит, что искомый отрезок равен: $1/50 \cdot 56 = 1.12$ а. е. или $1.12 \cdot 150000000 = 1.68 \cdot 10^8$ км. В году $365.25 \cdot 24 \cdot 3600 \approx 3.156 \cdot 10^7$ секунд. Значит, скорость звезды равна $1.68 \cdot 10^8/3.156 \cdot 10^7 \approx 5$ км/с.


Матрица параметров и ответов к вариантам задачи 13.

* / * *					
Вариант	Расстояние, пк	μ_{δ}	Ответ на первый вопрос	Ответ на второй вопрос	Ответ на третий вопрос
2	46	0.04	0.022 +6 баллов 0.021 +3 балла	9500000 [9300000, 9600000]	9
3	63	0.03	0.016 +6 баллов 0.015 +3 балла	13000000 [12800000, 13100000]	9
4	72	0.01	0.014 +6 баллов 0.013 +3 балла	14900000 [14700000, 15000000]	3
5	42	0.06	0.024 +6 баллов 0.023 +3 балла	8700000 [8500000, 8800000]	12

Задачи 14-17. На рисунке* представлена визуальная (полученная по глазомерным оценкам яркости) кривая блеска одной из самых массивных звёзд нашей галактики. По оси X отложена юлианская дата (она используется для непрерывного счёта дней без разбиения на года), а по оси Y — блеск звезды в звёздных величинах.

^{*} Источник изображения сайт: aavso.org

В каком примерно году блеск звезды был равен $+2^{m}$? Считайте, что в день проведения олимпиады юлианская дата равна JD = 2460973.

Ответ: 1858

Критерии оценивания: попадание в интервал [1855, 1862] +4 балла.

Чему была равна абсолютная звёздная величина звезды в самом ярком состоянии, если расстояние до звезды 2200 пк? Межзвёздным поглощением пренебречь.

Ответ: -12.7

Критерии оценивания: попадание в интервал [-12.8, -12.6] +5 баллов.

Чему была равна светимость этой звезды в максимуме блеска? Ответ выразите в светимостях Солнца. Межзвёздным поглощением пренебречь. Абсолютная звёздная величина Солнца +4.8^m.

Ответ: 10000000

Критерии оценивания: попадание в интервал [9200000, 12000000] +5 баллов.

Чему был равен радиус звезды в максимуме блеска, если температура её поверхности была равна $T_{\rm eff} = 7000~{\rm K}$? Ответ выразите в радиусах Солнца. Температуру Солнца принять равной $6000~{\rm K}$.

Ответ: 2300

Критерии оценивания: попадание в интервал [2200, 2500] +5 баллов.

Всего за задачу 19 баллов.

Решение

Из кривой блеска видно, что блеск $+2^{\rm m}$ наблюдался примерно на ${\rm JD}=2400000$. То есть это было $2460973-2400000\approx61000$ дней или около 167 лет назад. Искомый ответ — примерно в 1860 г. Шкала времени на рисунке достаточно грубая, поэтому принимается ответ из диапазона [1855–1862].

В максимуме блеск этой звезды достигал -1 звёздной величины. Для перевода видимой звёздной величины m в абсолютные M используется известная формула: M = m + 5 - 5 lg R, где R – расстояние до звезды, выраженное в парсеках. Подставив значения, получим: M = -1 + 5 - 5 lg 2200 = -12.7.

Сравнивая полученное значение абсолютной звёздной величины с абсолютной звёздной величиной Солнца, получим светимость в солнечных единицах: $L=2.512^{12.7+4.8}\approx 10^7$.

Светимость звезды связана с радиусом и температурой через закон Стефана-Больцмана: $L=4\pi R^2\sigma T^4$. Сопоставление с Солнцем позволяет найти радиус в радиусах Солнца: $R=\left(\frac{6000}{7000}\right)^2\sqrt{10^7}R_{\rm C}\approx 2300R_{\rm C}$.

Максимальный балл за работу – 107.