ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 7 КЛАСС

ОТВЕТЫ И КРИТЕРИИ ОЦЕНИВАНИЯ

Максимальный балл за работу – 40.

Задача 1. Вопросы 1-3

Пирамида Хеопса — самая большая из египетских пирамид. Средний размер наблюдаемых каменных блоков черновой кладки — 3,3 зереца в глубину и ширину, 2 зереца в высоту. Конструкция пирамиды такая, что блоки уложены со сдвигом на половину блока по отношению к ряду, лежащему ниже. Длина сторон основания пирамиды — около 440 королевских локтей. Известно, что 1 королевский локоть равен 1,5 зереца, а 1 зерец равен 0,35 м.

- **1.** Найдите количество блоков в основании пирамиды. Ответ дайте в тысячах штук с точностью до целого числа. *(3 балла)*
- **2.** Рассчитайте высоту пирамиды. Ответ дайте в метрах с округлением до целого числа. *(3 балла)*

Мальчик Дима решил собрать модель пирамиды Хеопса из пластикового конструктора. Размер одной детали 2 см × 2 см × 0.8 см. Поняв, что дома ограниченное количество деталей, он сделал основание со стороной в 10 деталей.

3. Сколько деталей для строительства ему потребовалось? Дайте ответ в виде целого числа. *(4 балла)*

Решение:

1. Длина стороны основания 440 королевских локтей. Известно, что 1 королевский локоть = 1,5 зереца, следовательно, сторона пирамиды равна $440 \times 1,5 = 660$ зереца. Ширина блока составляет 3,3 зереца. Тогда количество блоков в одном ряду основания:

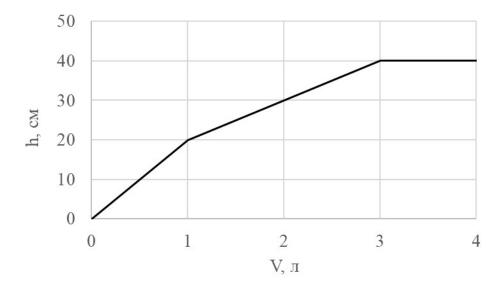
$$\frac{660}{3.3} = 200.$$

Общее количество блоков в основании: $200 \times 200 = 40~000$ блоков = =40~тыс. блоков.

2. Каждый следующий ряд уменьшается на 1 блок в длину и ширину (из-за сдвига на полблока с каждой стороны). Тогда высота пирамиды составляет 200 блоков. Высота одного блока равна 2 зереца, или 0,7 м. Получаем, что высота пирамиды:

$$200 \times 0.7 \text{ M} = 140 \text{ M}.$$

3. Количество деталей в первом ряду $10 \times 10 = 100$, во втором $9 \times 9 = 81$ и т.д. Общее количество деталей 385.


Матрица параметров и ответов к вариантам задачи 1

Вариант	Длина стороны,	Основание из деталей,	Ответ на вопрос 1	Ответ на вопрос 2	Ответ на вопрос 3
	королевские	шт	Bonpo c 1	Bompo c 2	Bonpoe 3
	локти				
1	440	10	40	140	385
2	484	8	48	154	204
3	429	12	38	136-137	650
4	462	11	44	147	506
5	451	9	42	143-144	285

Максимум за задачу 10 баллов.

Задача 2. Вопросы 4-7

В цилиндрическом сосуде находится песок массой m=3 кг. Площадь основания сосуда $S=100~{\rm cm}^2$. Сосуд медленно наполнили водой. Зависимость высоты уровня воды h в сосуде от налитого объёма V представлена на рисунке. Плотность воды $1~{\rm r/cm}^3$.

- **4.** Найдите насыпную плотность песка. Ответ дайте в г/см³ с округлением до десятых долей. *(3 балла)*
- **5.** Найдите плотность песчинок. Ответ дайте в г/см³ с округлением до десятых долей. *(3 балла)*
- **6.** Найдите среднюю плотность содержимого заполненного сосуда. Ответ дайте в r/cm^3 с округлением до десятых долей. *(2 балла)*

7. На сколько опустится уровень воды в заполненном сосуде, если убрать из него весь песок? Ответ дайте в см с округлением до десятых долей. (2 балла)

Решение:

4. Из условия задачи известно, что масса песка m=3 кг. Объём песка можно вычислить, зная площадь основания сосуда и высоту песка. Высоту песка найдём из графика. Видно, что на высоте 20 см наклон графика меняется, — это означает, что вода полностью покрыла песок. Объём, занимаемый песком, $V_{\Pi}=20\times100=2000$ см³. Найдём насыпную плотность песка:

$$\rho_{\rm H} = \frac{m}{V_{\rm T}} = \frac{3000 \, \text{r}}{2000 \, \text{cm}^3} = 1.5 \, \frac{\text{r}}{\text{cm}^3}.$$

5. Плотность песчинок ρ_{Π} определяется как отношение массы песка к объёму песчинок. Для её определения нужно найти истинный объём песка без учёта промежутков между песчинками. Объём воды, который покрыл весь песок, составляет 1 л или 1000 см³. Тогда объём песчинок:

$$V_{\rm M} = 2000 - 1000 = 1000 \,{\rm cm}^3$$
.

Получаем, что

$$\rho_{\Pi} = \frac{m}{V_{\text{M}}} = \frac{3000 \, \text{r}}{1000 \, \text{cm}^3} = 3.0 \, \frac{\text{r}}{\text{cm}^3}.$$

6. По графику определяем, что уровень перестал меняться при отметке 40 см. Это и есть высота сосуда. Тогда объём сосуда $V_{\rm c}=40\times 100=4000~{\rm cm}^3$. К этому моменту в сосуде находится 3 кг воды и 3 кг песка. Тогда средняя плотность содержимого:

$$\rho_{\rm cp} = \frac{2m}{V_c} = \frac{6000 \,{\rm r}}{4000 \,{\rm cm}^3} = 1.5 \,\frac{{\rm r}}{{\rm cm}^3}.$$

7. Зная истинный объём песка, можно найти изменение уровня:

$$h = \frac{V_{\text{H}}}{S} = \frac{1000 \text{ cm}^3}{100 \text{ cm}^2} = 10.0 \text{ cm}.$$

Матрица параметров и ответов к вариантам задачи 2

Вариант	т, кг	<i>S</i> , см ²	Ответ на вопрос 4	Ответ на вопрос 5		Ответ на вопрос 7
1	3	100	1,5	3,0	1,5	10,0
2	3,8	120	1,6	2,7	1,4	11,7
3	2,8	95	1,6	3,1	1,5	9,5
4	3,2	115	1,4	2,5	2,7	11,3
5	3,6	105	1,7	3,3	1,6	10,5

Максимум за задачу 10 баллов*.

*Задача автоматически засчитана всем участникам, так как угловой коэффициент графика не соответствует площадям поперечного сечения сосуда, указанным в 2-5 вариантах.

Задача 3. Вопросы 8-10

Из пункта A в пункт B сплавляют по реке плоты, отправляя их через равные промежутки времени. Скорости всех плотов относительно берега реки постоянны и равны скорости течения реки. Пешеход, идущий из A в B по берегу реки, прошёл треть пути от A до B к моменту отплытия первого плота. Дойдя до B, пешеход сразу отправился в A и встретил первый плот, пройдя четверть пути от B до A, а последний плот он встретил, не доходя до A одну пятую часть расстояния между A и B. Скорость пешехода постоянна и равна v = 5.5 км/ч, участок реки от A до B – прямолинейный.

- **8.** Найдите скорость течения реки. Ответ дайте в км/ч с точностью до десятых долей. *(3 балла)*
- **9.** Найдите расстояние от пункта A до пункта B, если от встречи пешехода с первым плотом до встречи его с последним плотом прошло t = 59,4 мин. Ответ дайте в км с точностью до десятых долей. (З балла)
- **10.** Сколько плотов отправлено из A в B, если их отправляли с интервалом времени $\tau = 12$ мин? Дайте ответ в виде целого числа. (4 балла)

Решение:

Обозначим L – расстояние между пунктами A и B, u – скорость течения реки.

8. Путь, пройденный пешеходом до встречи с первым плотом: $\frac{2}{3}L + \frac{1}{4}L = \frac{11}{12}L$, а время движения $t_1 = \frac{11L}{12v}$. За это же время плот проплыл расстояние $\frac{3}{4}L$. Тогда скорость реки:

$$u = \frac{3L}{4t_1} = \frac{3}{4} \cdot \frac{12}{11} v = \frac{9}{11} v = 4,5 \frac{\text{KM}}{9}.$$

9. Между встречами с плотами пешеход прошёл

$$L - \frac{L}{4} - \frac{L}{5} = \frac{11}{20}L.$$

По условию задачи время движения t=59,4 мин. Тогда

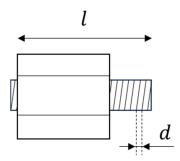
$$\frac{11}{20}L=vt$$
, отсюда $L=\frac{20}{11}vt=\frac{20\cdot5,5}{11}\cdot\frac{59,4}{60}$ км $=9,9$ км.

10. Найдём время $t_1 = \frac{11L}{12v} = 1,65$ ч = 99 мин. Последний плот до встречи с пешеходом плыл $t_2 = \frac{L}{5u} = 26,4$ мин. Получается, что после отплытия первого плота прошло времени $T = t_1 + t - t_2 = 99 + 59,4 - 26,4 = 132$ мин. За это время отплыло N плотов.

Всероссийская олимпиада школьников. Физика. 2025–2026 уч. г. Муниципальный этап. 7 класс. Ответы и критерии

$$N = \frac{T}{\tau} = \frac{132}{12} = 11$$

С учётом первого плота отплыло всего 12 плотов.


Матрица параметров и ответов к вариантам задачи 3

Вариант	<i>v</i> , км/ч	t, мин	τ, мин	Ответ на вопрос 8	Ответ на вопрос 9	Ответ на вопрос 10
1	5,5	59,4	12	4,5	9,9	12
2	3,3	54	10	2,7	5,4	13
3	4,4	63	14	3,6	8,4	11
4	6,6	45	10	5,4	9,0	11
5	7,7	36	10	6,3	8,4	9

Максимум за задачу 10 баллов.

Задача 4. Вопросы 11-13

Гайковёрт развивает скорость вращения n=600 оборотов в минуту. Гайка крепления колеса при этом имеет шаг резьбы d=2 мм. Глубина посадки гайки составляет l=3 см.

- 11. Рассчитайте, за какое время гайковёрт откручивает гайку, считая скорость вращения постоянной. Ответ дайте в секундах с точностью до десятых долей. (З балла)
- 12. Рассчитайте, за какое время гайковёрт открутит гайку, если на то, чтобы полностью раскрутиться, у гайковёрта уходит $\tau = 1$ с, а скорость вращения возрастает пропорционально времени. Ответ дайте в секундах с точностью до десятых долей. (4 балла)
- **13**. Какую максимальную скорость вдоль оси резьбы при этом приобретает гайка? Ответ дайте в мм/с с округлением до целого числа. *(3 балла)*

Решение:

11. Рассчитаем, какое количество оборотов должна сделать гайка, чтобы полностью сойти с резьбы:

$$N = \frac{l}{d} = 15$$
 оборотов.

Рассчитаем время, необходимое для этого:

$$t = \frac{N}{n} = \frac{l}{dn} = 1,5 \text{ c.}$$

12. Видно, что расчётное время превышает время разгона гайковёрта. Значит, за время откручивания гайки он успеет раскрутиться полностью. За время разгона гайковёрта его средняя скорость вращения будет в два раза меньше максимальной, тогда в этот промежуток времени гайка совершит

$$N_1 = \tau \frac{n}{2} = 5$$
 оборотов.

Оставшееся время вращение будет происходить с постоянной скоростью:

$$t_1 = \frac{N - N_1}{n} = 1 \text{ c.}$$

Итого общее время вращения в этом случае составит

$$t' = \tau + t_1 = 2 \text{ c.}$$

13. Максимальная скорость движения гайки будет достигаться при максимальной скорости вращения. К этому моменту гайка проходит путь $dN_1 = 10$ мм. Оставшийся путь $h = l - dN_1$. Время одного оборота с одной стороны можно рассчитать через скорость вращения, а с другой — через скорость гайки вдоль оси резьбы:

$$\frac{h}{v} = \frac{1}{n}.$$

Тогда скорость движения гайки составит

$$v = hn = 20 \frac{MM}{c}$$
.

Матрица параметров и ответов к вариантам задачи 4

Вариант	n, об./ мин.	<i>d</i> , мм	$\it l$, см	Ответ на вопрос 11	Ответ на вопрос 12	Ответ на вопрос 13
1	600	2	3	1,5	2,0	20
2	720	3	4	1,1	1,6	36
3	480	3	3	1,3	1,8	24
4	480	2	4	2,5	3,0	16
5	600	2	4	2,0	2,5	20

Максимум за задачу 10 баллов.

Максимальный балл за работу – 40.