ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ФИЗИКА. 2025—2026 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 7 КЛАСС

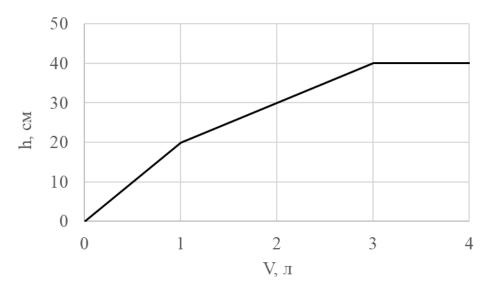
Задача 1. Вопросы 1-3

Пирамида Хеопса — самая большая из египетских пирамид. Средний размер наблюдаемых каменных блоков черновой кладки — 3,3 зереца в глубину и ширину, 2 зереца в высоту. Конструкция пирамиды такая, что блоки уложены со сдвигом на половину блока по отношению к ряду, лежащему ниже. Длина сторон основания пирамиды — около 440 королевских локтей. Известно, что 1 королевский локоть равен 1,5 зереца, а 1 зерец равен 0,35 м.

Найдите количество блоков в основании пирамиды. Ответ дайте в тысячах штук с точностью до целого числа. *(3 балла)*

Рассчитайте высоту пирамиды. Ответ дайте в метрах с округлением до целого числа. *(3 балла)*

Мальчик Дима решил собрать модель пирамиды Хеопса из пластикового конструктора. Размер одной детали 2 см × 2 см × 0.8 см. Поняв, что дома ограниченное количество деталей, он сделал основание со стороной в 10 деталей.


Сколько деталей для строительства ему потребовалось? Дайте ответ в виде целого числа. (4 балла)

Матрица параметров к вариантам задачи 1

Вариант	Длина	Основание
	стороны,	из деталей,
	королевские	ШТ
	локти	
1	440	10
2	484	8
3	429	12
4	462 11	
5	451	9

Задача 2. Вопросы 4-7

В цилиндрическом сосуде находится песок массой m=3 кг. Площадь основания сосуда $S=100~{\rm cm}^2$. Сосуд медленно наполнили водой. Зависимость высоты уровня воды h в сосуде от налитого объёма V представлена на рисунке. Плотность воды 1 г/см³.

Найдите насыпную плотность песка. Ответ дайте в r/cm^3 с округлением до десятых долей. (3 балла)

Найдите плотность песчинок. Ответ дайте в $\Gamma/\text{см}^3$ с округлением до десятых долей. (3 балла)

Найдите среднюю плотность содержимого заполненного сосуда. Ответ дайте в $\Gamma/\text{см}^3$ с округлением до десятых долей. (2 балла)

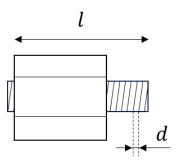
На сколько опустится уровень воды в заполненном сосуде, если убрать из него весь песок? Ответ дайте в см с округлением до десятых долей. (2 балла)

Матрица параметров к вариантам задачи 2

Вариант	т, кг	S, cm ²
1	3	100
2	3,8	120
3	2,8	95
4	3,2	115
5	3,6	105

Задача 3. Вопросы 8-10

Из пункта A в пункт B сплавляют по реке плоты, отправляя их через равные промежутки времени. Скорости всех плотов относительно берега реки постоянны и равны скорости течения реки. Пешеход, идущий из A в B по берегу реки, прошёл треть пути от A до B к моменту отплытия первого плота. Дойдя до B, пешеход сразу отправился в A и встретил первый плот, пройдя четверть пути от B до A, а последний плот он встретил, не доходя до A одну пятую часть расстояния между A и B. Скорость пешехода постоянна и равна v = 5,5 км/ч, участок реки от A до B — прямолинейный.


- **8.** Найдите скорость течения реки. Ответ дайте в км/ч с точностью до десятых долей. *(3 балла)*
- **9.** Найдите расстояние от пункта A до пункта B, если от встречи пешехода с первым плотом до встречи его с последним плотом прошло t = 59.4 мин. Ответ дайте в км с точностью до десятых долей. (З балла)
- **10.** Сколько плотов отправлено из A в B, если их отправляли с интервалом времени $\tau = 12$ мин? Дайте ответ в виде целого числа. (4 балла)

Матрица параметров к вариантам задачи 3

Вариант	<i>v</i> ,км/ч	<i>t</i> , мин	τ, мин
1	5,5		2
2		54	10
3		63	14
4		45	10
5		36	10

Задача 4. Вопросы 11-13

Гайковёрт развивает скорость вращения n=600 оборотов в минуту. Гайка крепления колеса при этом имеет шаг резьбы d=2 мм. Глубина посадки гайки составляет l=3 см.

- **11**. Рассчитайте, за какое время гайковёрт откручивает гайку, считая скорость вращения постоянной. Ответ дайте в секундах с точностью до десятых долей. *(3 балла)*
- 12. Рассчитайте, за какое время гайковёрт открутит гайку, если на то, чтобы полностью раскрутиться, у гайковёрта уходит $\tau = 1$ с, а скорость вращения возрастает пропорционально времени. Ответ дайте в секундах с точностью до десятых долей. (4 балла)
- **13**. Какую максимальную скорость вдоль оси резьбы при этом приобретает гайка? Ответ дайте в мм/с с округлением до целого числа. *(3 балла)*

Матрица параметров к вариантам задачи 4

Вариант	п, об./	<i>d</i> , мм	l, см
	Н		
1	600	2	3
2	720	3	4
3	480	3	3
4	480	2	4
5	600	2	4

Максимальный балл за работу – 40.